V. Микроклимат производственных помещений. Микроклимат производственных помещений Параметры определяющие микроклимат производственных помещений

Подбор персонала 17.09.2019
Подбор персонала

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ КРАСНОДАРСКОГО КРАЯ "БЕЛОГЛИНСКИЙ АГРАРНО-ТЕХНИЧЕСКИЙ ТЕХНИКУМ"

Реферат на тему: "Производственный микроклимат"

Подготовила студентка

Бобракова Юлия

Проверила: Преподаватель:

Гнездилов В.В

с. Белая Глина

Введение

1. Классификация производственного микроклимата

2. Влияние климатических условий на работоспособность и здоровье человека

3. Создание требуемых параметров микроклимата в производственных помещениях

4. Воздушная среда рабочей зоны

4.1 Причины и характер загрязнения воздуха рабочей зоны

4.2 Метеорологические условия и их нормирование в производственных помещениях

5. Мероприятия по оздоровлению воздушной среды

5.1 Вентиляция как средство защиты воздушной среды производственных помещений

5.2 Естественная вентиляции

5.3 Механическая вентиляция

5.4 Аэрация

5.5 Местная вентиляция

5.6 Оборудование для вентиляционных систем

6. Устройства очистки воздуха

Заключение

Список литературы

Введение

Большую часть времени активной жизнедеятельности человека занимает целенаправленная профессиональная работа, осуществляемая в условиях конкретной производственной среды, которая при несоблюдении принятых нормативных требований может неблагоприятно повлиять на его работоспособность и на его здоровье. Трудовая деятельность человека и производственная среда постоянно меняются в связи с развитием научно - технического прогресса. Все это накладывает на человека ответственность за соблюдение техники безопасности и создание оптимальных условий для работы. Вместе с тем труд остается первым, основным и непременным условием существования человека, социального, экономического и духовного развития общества, всестороннего совершенствования личности. Обеспечение безопасности труда и отдыха способствует сохранению жизни и здоровья людей за счет снижения травматизма и заболеваний.

В данной работе речь пойдет о микроклимате на производстве, о влиянии его на человека, о создании оптимальных условий для него. Эта тема будет всегда актуальна, пока живет и трудится человечество.

1 . Классификация производственного микроклимата

В процессе труда в помещении человек находится под влиянием определенных метеорологических условий или микроклимата. Производственный микроклимат - климат внутренней среды производственных помещений, определяется действующим на организм человека сочетанием температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

Производственный микроклимат зависит от климатического пояса и сезона года, характера технологического процесса и вида, используемого оборудования, размера помещений и числа работающих, условий отопления и вентиляции. Однако при всем многообразии микроклиматических условий их можно разделить на четыре группы.

1) Микроклимат производственных помещений, в которых технология производства не связана со значительными тепловыделениями. Микроклимат этих помещений в основном зависит от климата местности, отопления и вентиляции. Здесь возможно лишь незначительное перегревание летом в жаркие дни и охлаждение зимой при недостаточном отоплении.

2) Микроклимат производственных помещений со значительными тепловыделениями. К ним относятся котельные, кузнечные, мартеновские и доменные печи, хлебопекарни, цеха сахарных заводов и др. В горячих цехах большое влияние на микроклимат оказывает тепловое излучение нагретых и раскаленных поверхностей.

3) Микроклимат производственных помещений с искусственным охлаждением воздуха. К ним относятся различные холодильники.

4) Микроклимат открытой атмосферы, зависящих от климатопогодных условий (например, сельскохозяйственные, дорожные и строительные работы).

2 . Влияние климатических условий на работоспособность и здоровье человека

Жизнедеятельность человека сопровождается непрерывным потреблением энергии. Лишь часть этой энергии затрачивается человеком на выполнении работы, остальная часть энергии расходуется на основной обмен и тепловыделения с окружающей средой. Различают три способа распространения тепла: теплопроводность, конвекция и тепловое излучение.

Теплопроводность представляет собой перенос тепла вследствие беспорядочного (теплового) движения микрочастиц - атомов, молекул или электронов - непосредственно соприкасающихся друг с другом.

Конвекцией называется перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.

Тепловое излучение - процесс распространения электромагнитных колебаний с различной излучающей длиной волны, обусловленным тепловым движением атомов или излучающего тела. В реальных условиях тепло передается не каким - либо одним из указанных выше способов, а комбинированным. В производственных помещениях с большим тепловыделением приблизительно 2/3 тепла поступает за счет излучения, а почти все остальное количество приходится на долю конвекции. Количество тепла, переданного окружающему воздуху конвекцией Qк (Вт), при непрерывном процессе теплопередачи может быть рассчитано по закону теплопередачи Ньютона

QK = a S (t - tв),

где а-коэффициент конвекции, Вт/(м2 град);

S -площадь теплоотдачи, м2;

t -температура источника, °С;

t -температура окружающего воздуха, °С.

Существенным источником теплового излучения в производственных условиях является расплавленный или нагретый металл, открытое пламя, нагретые поверхности.

Наилучшее тепловое самочувствие человека будет тогда, когда тепловыделение (Qтв) организма человека полностью отдается окружающей среде (Qто), т.е. имеет место тепловой баланс (Qтв = Qто). Превышение тепловыделения организма над теплоотдачей в окружающую среду (Qтв > Qто) приводит к нагреву организма и к повышению его температуры, человеку становится жарко. Наоборот, превышение теплоотдачи над тепловыделением (Qтв < Qто) приводит к охлаждению организма и к снижению его температуры, человеку становится холодно. Средняя температура тела человека - 36,5°С. Даже незначительные отклонения этой температуры в ту или другую сторону приводят к ухудшению самочувствия человека.

Способность человеческого организма к поддержанию постоянной температуры носит название терморегуляции . Терморегуляция достигается отводом излишнего тепла в процессе жизнедеятельности от организма в окружающее пространство. Эта величина зависит от степени физической нагрузки и параметров микроклимата в помещении (в состоянии покоя - 85 Вт, возрастая при тяжелой физической работе до 500 Вт).

Путями такой теплоотдачи являются: теплопроводность через одежду (Qт), конвекция тела (Qк), излучение на окружающие поверхности (Qи), испарение влаги с поверхности кожи (Qисп), а также за счет нагрева выдыхаемого воздуха (Qв), что представлено уравнением теплового баланса

Qобщ = Qт + Qк + Qи + Qисп + Qв

Вклад перечисленных составляющих передачи тепла непостоянен и зависит от параметров микроклимата в помещении, от температуры стен, потолка, оборудования. Теплоотдача конвекцией зависит от температуры воздуха в помещении и скорости его движения на рабочем месте. Влияние температуры окружающего воздуха на человеческий организм связано в первую очередь с сужением или расширением кровеносных сосудов кожи. Под действием низких температур воздуха кровеносные сосуды кожи сужаются, в результате чего замедляется приток крови к поверхности тела и снижается теплоотдача от поверхности тела за счет конвекции и излучения. При высоких температурах окружающего воздуха наблюдается обратная картина: за счет расширения кровеносных сосудов кожи и увеличения притока крови существенно увеличивается теплоотдача в окружающую среду.

Длительный перегрев организма приводит к обильному потоотделению, учащению пульса и дыхания, резкой слабости, головокружению, появлению судорог, а в тяжелых случаях - возникновению теплового удара.

Переохлаждение же приводит к возникновению простудных заболеваний, хронических воспалений суставов, мышц. Чтобы избежать всего этого, нужно создать оптимальные микроклиматические условия на рабочих местах, что несомненно создает предпосылки для высокой работоспособности.

3 . Создание требуемых параметров микроклимата в производственных помещениях

Требуемых параметров микроклимата регламентируются "Санитарными правилами по организации технологических процессов и гигиеническими требованиями к производственному оборудованию" и осуществляются комплексом технологических, санитарно - технических, организационных и медико - профилактических мероприятий.

Ведущая роль в профилактике вредного влияния высоких температур, инфракрасного принадлежит технологическим мероприятиям (например, применение штамповки вместо поковочных работ).

Внедрение автоматизации и механизации дает возможность пребывания рабочих вдали от источников радиационных и конвекционных излучений.

К группе санитарно - технических мероприятий относится применение коллективных средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников, либо рабочих мест; высокое качество воздушной среды - воздушное душирование, радиационное охлаждение, мелкодисперсное распыление воды, общеобменная вентиляция или кондиционирование воздуха.

Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования.

Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий значительно снижают выделении теплоты от источников.

Выбор теплозащитных средств в каждом случае должен осуществляться по максимальным значениям эффективности с учетом требований органомики, технической эстетики, безопасности для технологического процесса или вида работ и технико - экономического обоснования.

Устанавливаемые в цехе теплозащитные средства должны быть простыми в изготовлении и монтаже, удобными для обслуживания, не затруднять осмотр, чистку, смазывание агрегатов, обладать необходимой прочностью, иметь минимальные эксплуатационные расходы.

4 . Воздушная среда рабочей зоны

Одним из необходимых условий здорового и высокопроизводительного труда является обеспечение чистоты воздуха и нормальных метеорологических условий в рабочей зоне помещений, т. е. пространстве высотой до 2 м над уровнем пола или площадки, где находятся рабочие места.

4.1 Причины и характер загрязнения воздуха рабочей зоны

Атмосферный воздух в своем составе содержит (% по объему): азота - 78,08; кислорода -20,95; аргона, неона и других инертных газов - 0,93; углекислого газа - 0,03; прочих газов -0,01. Воздух такого состава наиболее благоприятен для дыхания.

Воздух рабочей зоны редко имеет приведенный выше химический состав, так как многие технологические процессы сопровождаются выделением в воздух производственных помещений вредных веществ - паров, газов, твердых и жидких частиц.

Пары и газы образуют с воздухом смеси, а твердые и жидкие частицы вещества - дисперсные системы - аэрозоли, которые делятся на пыль (размер твердых частиц более 1 мкм), дым (менее 1 мкм) и туман (размер жидких частиц менее 10 мкм).

Пыль бывает крупно - (размер частиц более 50 мкм), средне - (50 - 10 мкм) и мелкодисперсной (менее 10 мкм).

Поступление в воздух рабочей зоны того или иного вредного вещества зависит от технологического процесса, используемого сырья, а также от промежуточных и конечных продуктов. Так, пары выделяются в результате применении различных жидких веществ, например, растворителей, ряда кислот, бензина, ртути и т. д. а газы - чаще всего при проведении технологического процесса, например, при сварке, литье, термической обработке металлов.

Причины выделения пыли на предприятиях машиностроения могут быть самыми разнообразными. Пыль образуется при дроблении и размоле, транспортировании измельченного материала, механической обработке хрупких материалов, отделке поверхности (шлифовании, глянцевании), упаковке и расфасовке и т. п. Эти причины пылеобразования являются основными, или первичными. В условиях производства может возникать и вторичное пылеобразование, например, при уборке помещений, движении людей и т. п. Такое выделение пыли иногда бывает весьма нежелательным (в электровакуумной промышленности, приборостроении).

Дым возникает при сгорании топлива в печах и энергоустановках, а туман - при использовании смазочно-охлаждающих жидкостей, в гальванических и травильных цехах при обработке металлов. Например, в зарядных отделениях аккумуляторных образуется аэрозоль серной кислоты.

Вредные вещества проникают в организм человека главным образом через дыхательные пути, а также через кожу и с пищей. Большинство этих веществ относится к опасным и вредным производственным факторам, поскольку они оказывают токсическое действие на организм человека. Эти вещества, хорошо растворяясь в биологических средах, способны вступать с ними во взаимодействие, вызывая нарушение нормальной жизнедеятельности. В результате их действия у человека возникает болезненное состояние - отравление, опасность которого зависит от продолжительности воздействия, концентрации q (мг/мЗ) и вида вещества. По характеру воздействия на организм человека вредные вещества подразделяются на:

Общетоксические - вызывающие отравление всего организма (окись углерода, цианистые соединения, свинец, ртуть, бензол, мышьяк и его соединения и др.).

Раздражающие - вызывающие раздражение дыхательного тракта и слизистых оболочек (хлор, аммиак, сернистый газ, фтористый водород, окислы азота, озон, ацетон и др.).

Сенсибилизирующие - действующие как аллергены (формальдегид, различные растворители и лаки на основе нитро - и нитрозосоединеннй и др.).

Канцерогенные - вызывающие раковые заболевания (никель и его соединения, амины, окислы хрома, асбест и др.).

Мутагенные - приводящие к изменению наследственной информации (свинец, марганец, радиоактивные вещества и др.).

Влияющие на репродуктивную (детородную) функцию (ртуть, свинец, марганец, стирол, радиоактивные вещества и др.).

Нормирование содержания вредных веществ в воздухе рабочей зоны

По ГОСТ 12.1.005 - 76 установлены предельно допустимые концентрации вредных веществ qПДК (мг/м3) в воздухе рабочей зоны производственных помещений. Вредные вещества по степени воздействия на организм человека подразделяются на следующие классы: 1-й - чрезвычайно опасные, 2-й - высокоопасные, 3-я - умеренно опасные, 4-й -малоопасные. В качестве примера в табл. 1 приведены нормативные данные для ряда веществ (всего нормируется более 700 веществ).

Таблица 1. - Значения допустимых концентраций веществ

Вещество

Величина ПДК, мг/м3

Класс опасности

Агрегатное состояние

Бериллий и его соединения

аэрозоль

аэрозоль

Марганец

аэрозоль

Пары или газы

Пары или газы

Соляная кислота

Пары или газы

Пары или газы

Окись железа

аэрозоль

Окись углерода, аммиак

Пары или газы

Топливный бензин

Пары или газы

Пары или газы

4.2 Метеорологические условия и их нормирование в производственных помещениях

Метеорологические условия, или микроклимат, в производственных условиях определяются следующими параметрами: температурой воздуха (°С), относительной влажностью (%), скоростью движения воздуха на рабочем месте V(m/c).

Кроме этих параметров, являющихся основными, не следует забывать об атмосферном давлении Р. которое влияет на парциальное давление основных компонентов воздуха (кислорода и азота), а. следовательно, и на процесс дыхания.

Жизнедеятельность человека может проходить в довольно широком диапазоне давлений 734 - 1267 гПа (550 950 мм рт. ст.). Однако здесь необходимо учитывать, что для здоровья человека опасно быстрое изменение давления, а не сама величина этого давления. Например, быстрое снижение давления всего на несколько гектопаскалей по отношению к нормальной величине 1013 гПа (760 мм рт. ст.) вызывает болезненное ощущение.

Необходимость учета основных параметров микроклимата может быть объяснена на основании рассмотрения теплового баланса между организмом человека и окружающей средой производственных помещений.

При высокой температуре воздуха в помещении кровеносные сосуды кожи расширяются, при этом происходит повышенный приток крови к поверхности тела, и теплоотдача в окружающую среду значительно увеличивается. Однако при температурах окружающего воздуха и поверхностей оборудования и помещений 30 - 35° С отдача теплоты конвекцией и излучением в основном прекращается. При более высокой температуре воздуха большая часть теплоты отдается путем испарения с поверхности кожи. В этих условиях организм теряет определенное количество влаги, а вместе с ней и соли, играющие важную роль в жизнедеятельности организма. Поэтому в горячих цехах рабочим дают подсоленную воду. При понижении температуры окружающего воздуха реакция человеческого организма иная: кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется, и отдача теплоты конвекцией* и излучением уменьшается. Таким образом, для тепловогосамочувствия человека важно определенное сочетание температуры, относительной влажности и скорости движения воздуха в рабочей зоне.

Влажность воздуха оказывает большое влияние на терморегуляцию организма. Повышенная влажность (ср>85%) затрудняет терморегуляцию из-за снижения испарения пота, а слишком низкая влажность (ф<20%) вызывает пересыхание слизистых оболочек дыхательных путей. Оптимальные величины относительной влажности составляют 40 -60%.

Движение воздуха в помещениях является важным фактором, влияющим на тепловое самочувствие человека. В жарком помещении движение воздуха способствует увеличению отдачи теплоты организмом и улучшает его состояние, но оказывает неблагоприятное воздействие при низкой температуре воздуха в холодный период года. Минимальная скорость движения воздуха, ощущаемая человеком, составляет 0,2 м/с. В зимнее время года скорость движения воздуха не должна превышать 0,2 - 0,5 м/с, а летом - 0,2 - 1.0 м/с. В горячих цехах допускается увеличение скорости обдува рабочих (воздушное душирование) до 3,5 м/с.

В соответствии с ГОСТ 12.1.005 - 76 устанавливаются оптимальные и допустимые метеорологические условия для рабочей зоны помещения, при выборе которых учитываются:

1) время года - холодный и переходный периоды со среднесуточной температурой наружного воздуха ниже +10°*С; теплый период с температурой +10°С и выше;

а) легкие физические работы с энергозатратами до 172 Дж/с (150 ккал/ч), к которым относятся, например, основные процессы точного приборостроения имашиностроения;

б) физические работы средней тяжести с энергозатратами 172 - 293 Дж/с (150 - 250 ккал/ч). например, в механосборочных, механизированных литейных, прокатных, термических цехах и т. п.;

в) тяжелые физические работы с энергозатратами более 293 Дж/с, к которым относятся работы, связанные с систематическим физическим напряжением и переносом значительных (более 10 кг) тяжестей; это - кузнечные цехи с ручной ковкой, литейные с ручной набивкой.

3) характеристика помещения по избыткам явной теплоты: все производственные помещения делятся на помещения с незначительными избытками явной теплоты, приходящимися на 1 мЗ объема помещения. 23.2 Дж/(мЗс) и менее, и со значительными избытками - более 23,2 Дж/(мЗс).

Явная теплота - теплота, поступающая в рабочее помещение от оборудования, отопительных приборов, нагретых материалов, людей и других источников, в результате инсоляции и воздействующая на температуру воздуха в этом помещении.

5 . Мероприятия по оздоровлению воздушной среды

Требуемое состояние воздуха рабочей зоны может быть обеспечено выполнением определенных мероприятий, к основным из которых относятся:

1. Механизация и автоматизация производственных процессов, дистанционное управление ими. Эти мероприятия имеют большое значение для защиты от воздействия вредных веществ, теплового излучения, особенно при выполнении тяжелых работ. Автоматизация процессов, сопровождающихся выделением вредных веществ, не только

повышает производительность, но и улучшает условия труда, поскольку рабочие выводятся из опасной зоны. Например, внедрение автоматической сварки с дистанционным управлением вместо ручной дает возможность резко оздоровить условия труда сварщика, применение роботов-манипуляторов позволяет устранить тяжелый ручной труд.

2.Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону. При проектировании новых технологических процессов и оборудования необходимо добиваться исключения или резкого уменьшения выделения вредных веществ в воздух производственных помещений. Этого можно достичь, например, заменой токсичных веществ нетоксичными, переходом с твердого и жидкого топлива на газообразное, электрический высокочастотный нагрев; применением пылеподавления водой (увлажнение, мокрый помол) при измельчении и транспортировке материалов и т. д.

Большое значение для оздоровления воздушной среды имеет надежная герметизация, оборудования, в котором находятся вредные вещества, в частности, нагревательных печей, газопроводов, насосов, компрессоров, конвейеров и т. д. Через неплотности в соединениях, а также вследствие газопроницаемости материалов происходит истечение находящихся под давлением газов. Количество вытекающего газа зависит от его физических свойств, площади неплотностей и разницы давлений снаружи и внутри оборудования.

3.Защита от источников тепловых излучений. Это важно для снижения температуры воздуха в помещении и теплового облучения работающих.

4.Устройство вентиляции и отопления, что имеет большое значение для оздоровления воздушной среды в производственных помещениях.

5. Применение средств индивидуальной защиты.

5.1 Вентиляция как средство защиты воздушной среды производственных помещений

Задачей вентиляции является обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха.

По способу перемещения воздуха вентиляция бывает с естественным побуждением (естественной) и с механическим (механической). Возможно также сочетание естественной и механической вентиляции (смешанная вентиляция).

Вентиляция бывает приточной, вытяжной или приточно-вытяжной в зависимости от того, для чего служит система вентиляции, - для подачи (притока) или удаления воздуха из помещения или (и) для того и другого одновременно.

По месту действия вентиляция бывает общеобменной и местной.

Действие общеобменной вентиляции основано на разбавлении загрязненного, нагретого, влажного воздуха помещения свежим воздухом до предельно допустимых норм. Эту систему вентиляции наиболее часто применяют в случаях, когда вредные вещества, теплота, влага выделяются равномерно по всему помещению. При такой вентиляции обеспечивается поддержание необходимых параметров воздушной Среды во всем объеме помещения.

Воздухообмен в помещении можно значительно сократить, если улавливать вредные вещества в местах их выделения. С этой целью технологическое оборудование, являющееся источником выделения вредных веществ, снабжают специальными устройствами, от которых производится отсос загрязненного воздуха. Такая вентиляция называется местной вытяжкой. Местная вентиляция по сравнению с общеобменной требует значительно меньших затрат на устройство и эксплуатацию. В производственных помещениях, в которых возможно внезапное поступление в воздух рабочей зоны больших количества вредных паров и газов, наряду с рабочей предусматривается устройство аварийной вентиляции.

Для эффективной работы системы вентиляции важно, чтобы еще на стадии проектирования были выполнены следующие технические и санитарно-гигиенические требования.

1.Количество приточного воздуха должно соответствовать количеству удаляемого (вытяжки); разница между ними должна быть минимальной.

В ряде случаев необходимо так организовать воздухообмен, чтобы одно количество воздуха обязательно было больше другого. Например, при проектировании вентиляции двух смежных помещений, в одном из которых выделяются вредные вещества. Количество удаляемого воздуха из этого помещения должно быть больше количества приточного воздуха, в результате чего в помещении создается небольшое разрежение. Возможны такие схемы воздухообмена, когда во всем помещении поддерживается избыточное по отношению к атмосферному давление. Например, в цехах электровакуумного производства, для которого особенно важно отсутствие пыли.

2.Приточные и вытяжные системы в помещении должны быть правильно размещены. Свежий воздух необходимо подавать в те части помещения, где количество вредных веществ минимально, а удалять, где выделения максимальны. Приток воздуха должен производиться, как правило, в рабочую зону, а вытяжка - из верхней зоны помещения.

3. Система вентиляции не должна вызывать переохлаждения или перегрева работающих.

4.Система вентиляции не должна создавать шум на рабочих местах, превышающий предельно допустимые уровни.

5. Система вентиляции должна быть электро-, пожаро- и взрывобезопасна, проста по устройству, надежна в эксплуатации и эффективна.

5.2 Естественная вентиляции

Воздухообмен при естественной вентиляции происходит вследствие разности температур воздуха в помещении и наружного воздуха, а также в результате действия ветра. Естественная вентиляция может быть неорганизованной и организованной. При неорганизованной вентиляции поступление и удаление воздуха происходит через неплотности и поры наружных ограждений (инфильтрация), через окна, форточки, специальные проемы (проветривание).

Организованная естественная вентиляция осуществляется аэрацией и дефлекторами, и поддается регулировке.

5.3 Механическая вентиляция

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами, приточной вытяжной вентиляцией.

Приточная вентиляция . Установки приточной вентиляции обычно состоят из следующих элементов: воздухозаборное устройство для забора чистого воздуха; воздуховоды, по которым воздух подается в помещение: фильтры для очистки воздуха от пыли; калориферы для нагрева воздуха; вентилятор; приточные насадки; регулирующие устройства, которые устанавливаются в воздухоприемном устройстве и на ответвлениях воздуховодов.

Вытяжная вентиляция. Установки вытяжной вентиляции включают в себя: вытяжные отверстия или насадки; вентилятор; воздуховоды; устройство для очистки воздуха от пыли и газов; устройство для выброса воздуха, которое должно быть расположено на 1-1.5 м выше конька крыши.

При работе вытяжной системы чистый воздух поступает в помещение через неплотности в ограждающих конструкциях. В ряде случаев это обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция. В этой системе воздух подается в помещение приточной вентиляцией, а удаляется вытяжной вентиляцией, работающими одновременно.

Для рециркуляции разрешается использовать воздух помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности, причем концентрация этих веществ в подаваемом в помещение воздухе не превышает 0.3 концентрации ПДК.

5.4 Аэрация

Осуществляется в холодных цехах за счет ветрового давления, а в горячих цехах за счет совместного и раздельного действия гравитационного и ветрового давлений. В летнее время свежий воздух поступает в помещение через нижние проемы, расположенные на небольшой высоте от иола (1 - 1,5 м), а удаляется через проемы в фонаре здания.

Поступление наружного воздуха в зимнее время осуществляется через проемы, расположенные на высоте 4 - 7 м от пола. Высота принимается с таким расчетом, чтобы холодный наружный воздух, опускаясь до рабочей зоны, успел достаточно нагреться за счет перемешивания с теплым воздухом помещения. Меняя положение створок, можно регулировать воздухообмен.

При обдувании зданий ветром с наветренной стороны создается повышенное давление воздуха, а на заветренной стороне - разрежение.

Под напором воздуха с наветренной стороны наружный воздух будет поступать через нижние проемы и. распространяясь в нижней части здания, вытеснять более нагретый и загрязненный воздух через проемы в фонаре здания наружу. Таким образом, действие ветра усиливает воздухообмен, происходящий за счет гравитационного давления. Преимуществом аэрации является то, что большие объемы воздуха подаются и удаляются без применения вентиляторов и воздуховодов. Система аэрации значительно дешевле механических систем вентиляции.

Недостатки: в летнее время эффективность аэрации снижается вследствие повышения температуры наружного воздуха; поступающий в помещение воздух не обрабатывается (не очищается, не охлаждается).

Вентиляция с помощью дефлекторов. Дефлекторы представляют собой специальные насадки, устанавливаемые на вытяжных воздуховодах и использующие энергию ветра. Дефлекторы применяют для удаления загрязненного или перегретого воздуха из помещений сравнительно небольшого объема, а также для местной вентиляции, например, для вытяжки горячих газов от кузнечных горнов, печей и т.д.

5.5 Местная вентиляция

Местная вентиляция бывает приточной и вытяжной.

Местная приточная вентиляция служит для создания требуемых условий воздушной среды в ограниченной зоне производственного помещения. К установкам местной приточной вентиляции относятся: воздушные души и оазисы, воздушные и воздушно-тепловые завесы.

Воздушное душирование применяют в горячих цехах на рабочих местах под воздействием лучистого потока теплоты интенсивностью 350 Вт/м2 и более. Воздушный душ представляет собой направленный на рабочего поток воздуха. Скорость обдува составляет 1 - 3.5 м/с в зависимости от интенсивности облучения. Эффективность душирующих агрегатов повышается при распылении воды в струе воздуха.

Воздушные оазисы - это часть производственной площади, которая отделяется со всех сторон легкими передвижными перегородками и заполняется воздухом более холодным и чистым, чем воздух помещения.

Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота холодным воздухом, проникающим через ворота. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах. Работа завес основана на том. что подаваемый воздух к воротам выходит через специальный воздуховод с щелью под определенным углом с большой скоростью (до 10 - 15 м/с) навстречу входящему холодному потоку и смешивается с ним. Полученная смесь более теплого воздуха поступает на рабочие места или (при недостаточном нагреве) отклоняется в сторону от них. При работе завес создается дополнительное сопротивление проходу холодного воздуха через ворота. вентиляционный климатический производственный помещение

Местная вытяжная вентиляция. Ее применение основано на улавливании и удалении вредных веществ непосредственно у источника их образования.

Устройства местной вытяжное вентиляции делают в виде укрытий или местных отсосов.

Укрытия с отсосом характерны тем. что источник вредных выделений находится внутри них. Они могут быть выполнены как укрытия-кожухи, полностью или частично заключающие оборудование (вытяжные шкафы, витринные укрытия, кабины и камеры). Внутри укрытий создается разрежение, в результате чего вредные вещества не могут попасть в воздух помещения. Такой способ предотвращения выделения вредных веществ в помещении называется аспирацией.

Важно еще на стадии проектирования разрабатывать технологическое оборудование таким образом, чтобы такие вентиляционные устройства органически входили бы в общую конструкцию, не мешая технологическому процессу и одновременно полностью решая санитарно-гигиенические задачи.

Защитно-обеспыливающие кожухи устанавливаются на станки, на которых обработка материалов сопровождается пылевыделением и отлетанием крупных частиц, которые могут нанести травму. Это шлифовальные, обдирочные, полировальные, заточные станки по металлу, деревообрабатывающие станки и др.

Кабины и камеры представляют собой емкости определенного объема, которыуе производят работы, связанные с выделением вредных веществ (пескоструйная и дробеметная обработка, окрасочные работы и т.д.).

Вытяжные зонты применяют для локализации вредных веществ, поднимающихся вверх, а именно при тепло - и влаговыделениях. Всасывающие панели применяют в тех случаях, когда применение вытяжных зонтов недопустимо по условию попадания вредных веществ в органы дыхания работающих.

Эффективным местным отсосом является панель Чернобережского, применяемая при таких операциях, как газовая сварка, пайка и т.п.

Пылегазоприемники. воронки применяются при проведения пайки и сварочных работ.

Они располагаются в непосредственной близости от места пайки или сварки.

Бортовые отсосы. При травлении металлов и нанесении гальванопокрытий с открытой поверхности ванн выделяются пары кислот, щелочей, при цинковании, меднении, серебрении - чрезвычайно вредный цианистый водород, при хромировании - окись хрома и т.д. Для локализации этих вредных веществ используют бортовые отсосы, представляющие собой щелевидные воздуховоды шириной 40 - 100 мм, устанавливаемые по периферии ванн.

Принцип действия бортового отсоса состоит в том. что затягиваемый в щель воздух, двигаясь над поверхностью жидкости, увлекает с собой вредные вещества, не давая им распространиться вверх по помещению.

5.6 Оборудование для вентиляционных систем

Вентиляторы - это воздуходувные машины, создающие определенное давление и служащие для перемещения воздуха при потерях давления в вентиляционной сети не более 12 кПа. Наиболее распространенными являются осевые и радиальные (центробежные) вентиляторы.

В зависимости от состава перемещаемого воздуха вентиляторы изготовляют из определенных материалов и различной конструкции:

1) обычного исполнения для перемещения чистого воздуха, изготавливаются из обычных сортов стали:

2) антикоррозионного исполнения - для перемещения агрессивных сред, хромистые и хромоникелевые стали винипласт и т.д.:

3) электрозащитного исполнения - для перемещения взрывоопасных смесей (содержащих водород, ацетилен и т.п.). основные детали изготавливаются из алюминия и дюралюминия, устанавливается сальниковое уплотнение навалу;

4) пылевые - для перемещения пыльного воздуха, рабочие колеса изготавливают из материалов повышенной прочности, они имеют мало (4 - 8) лопаток.

Эжекторы применяют в вытяжных системах в тех случаях, когда необходимо удалить очень агрессивную среду, пыль, способную к взрыву не только от удара, но и от трения, или легко воспламеняющиеся взрывоопасные газы (ацетилен, эфир и т.д.). Недостатком эжектора является низкий к.п.д. не превышающий 0,25.

6 . Устройства очистки воздуха

Очистка воздуха от пыли может быть грубой, средней и тонкой.

Для грубой и средней очистки применяют пылеуловители, действие которых основано на использовании сил тяжести или инерционных сил: пылеосадительные камеры, циклоны, вихревые, жалюзийные. камерные и ротационные пылеуловители.

Пылеосадительные камеры применяют для осаждения крупной и тяжелой пыли с размером частиц более 100 мкм. Скорость воздуха в поперечном сечении корпуса 2 не более 0,5 м/с. Поэтому габариты камер получаются довольно большими, что ограничивает их применение.

Циклоны применяют для очистки воздуха от сухой не волокнистой и неслиняющейся пыли

Для очистки приточного воздуха от пыли и тумана применяют электрофильтры. Работа электрофильтров основана на создании сильного электрического поля при помощи выпрямленного тока высокого напряжения (до 35 кВ). подводимого к коронирующим и осадительным электродам. При прохождении запыленного воздуха через зазор между электродами происходит ионизация молекул воздуха с образованием положительных и отрицательных ионов. Ионы, адсорбируясь на частицах пыли, заряжают их положительно или отрицательно. Пыль, получившая заряд отрицательного знака, стремится осесть на положительном электроде, а положительно заряженная пыль оседает на отрицательных электродах. Эти электроды периодически встряхиваются с помощью специального механизма, пыль собирается в бункере и периодически удаляется. Для средней и тонкой очистки воздуха широко используются фильтры, в которых запыленный воздух пропускается через пористые фильтрующие материалы. Если размер частиц пыли больше размера пор фильтрующего материала, то действует поверхностный (сеточный) эффект пылеулавливания. Если размер частиц пыли меньше размера пор, то пыль проникает в фильтрующий материал и оседает на частицах или волокнах, образующих этот материал. Такой процесс фильтрования называется глубинным. В качестве фильтрующих материалов применяют ткани, войлоки, бумагу, сетки, набивки волокон, металлическую стружку, фарфоровые или металлические полые кольца, пористую керамику или пористые металлы.

Заключение

С развитием научно - технического прогресса количество опасностей в техносфере непрерывно растет, а к сожалению методы и средства защиты от них создаются и совершенствуются с опозданием, особенно в России.

Многие заводы и предприятия еле живые. О каком же новшестве или нормальном микроклимате может идти речь. В результате аварии и катастрофы страдает и погибает множество людей.

Проблема достижения оптимального микроклимата является основной на предприятиях и во многом от этого зависит развитие нашей промышленности, ведь только здоровые люди могут произвести качественную продукцию.

Список литературы

1 А.С. Гринин, В.Н. Новиков. Безопасность жизнедеятельности. М.: ФАИР - ПРЕСС, 2002. 288с.

2 Э.А. Арустамов. Безопасность жизнедеятельности. М.: "Дашков и К°, 2003. 496с.

3 А.Т. Смирнов, М.П. Фролов. Основы безопасности жизнедеятельности. М.: ООО "Фирма "Издательство АСТ", 2002. 320с.

4 Безопасность жизнедеятельности. Под ред. О.Н. Русака СПб.: ЛТА, 1991. 358с.

5 Справочная книга по охране труда в машиностроении. Под ред. О.Н. Русака М.: Машиностроение, 1995. 289с.

Размещено на Allbest.ru

...

Подобные документы

    Причины и характер загрязнения воздуха рабочей зоны. Терморегуляция организма человека. Нормативные содержания вредных веществ и микроклимата. Методы и средства контроля защиты воздушной среды. Система очистки воздуха. Основные причины выделения пыли.

    реферат , добавлен 08.12.2009

    Метеорологические условия рабочей среды (микроклимат). Параметры и виды производственного микроклимата. Создание требуемых параметров микроклимата. Системы вентиляции. Кондиционирование воздуха. Системы отопления. Контрольно-измерительные приборы.

    контрольная работа , добавлен 03.12.2008

    Понятие климатических условий (микроклимата) в рабочей зоне, приборы для их измерения. Параметры микроклимата рабочей зоны по нормативу оптимальных условий для холодного периода. Условия, оптимальные для работ средней тяжести. Оптимизация рабочей зоны.

    лабораторная работа , добавлен 16.05.2013

    Исследование температуры, влажности и скорости движения воздуха в производственных помещениях ООО Абакан-КАМИ. Сопоставление фактических значений параметров микроклимата на предприятии с нормативными. Анализ их влияния на работоспособность персонала.

    курсовая работа , добавлен 13.07.2011

    Микроклиматические условия производственной среды. Влияние показателей микроклимата на функциональное состояние различных систем организма, самочувствие, работоспособность и здоровье. Оптимальные и допустимые условия микроклимата в рабочей зоне помещения.

    реферат , добавлен 06.10.2015

    Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.

    контрольная работа , добавлен 23.06.2013

    Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Средства обеспечения надлежащей чистоты и допустимых параметров микроклимата рабочей зоны. Требования к освещению помещений и рабочих мест.

    презентация , добавлен 24.06.2015

    Микроклимат производственных помещений. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Защита временем при работе в условиях нагревающего микроклимата. Профилактика перегревания организма. Системы и виды производственного освещения.

    презентация , добавлен 08.12.2013

    Нормирование метеорологических условий в производственных помещениях. Контроль микроклимата на рабочих местах. Мероприятия по нормализации состояния воздушной среды и защите организма работающих от действия неблагоприятных факторов производства.

    курсовая работа , добавлен 07.01.2011

    Определение рабочей зоны и места. Понятие среднесуточной и эффективной температуры. Оценка климатических параметров, обеспечивающих наилучшее самочувствие и наивысшую работоспособность человека. Особенности его теплового взаимодействия с внешней средой.

Микроклимат производственных помещений представляет собой комплекс физических факторов в ограниченном замкнутом пространстве, оказывающих влияние на теплообмен человека с окружающей средой, его тепловое состояние, самочувствие, работоспособность и здоровье.

Микроклимат бытовых, производственных и жилых помещений определяется действующими на организм человека сочетаниями температуры воздуха (t, °С), относительной влажности (ф, %), скоростью движения воздуха (V, м/с), теплового излучения от внутренних поверхностей помещения (стен, потолка, пола, технического оборудования) (/, Вт/м 2).

Повышенная температура в производственных помещениях обусловливается:

  • технологическим оборудованием (плавильные, обжигательные, нагревательные, сушильные печи, паровые котлы, паропроводы и т.д.);
  • нагретыми до высокой температуры обрабатываемыми материалами и готовыми изделиями (расплавленный металл, стекло, поковки, слитки и т.д.);
  • выделением тепла при экзотермических химических реакциях;
  • выбросом горячих паров и газов через неплотности печей, аппаратов, труб, паропроводов и др.;
  • переходом в теплоту электрической и механической энергии движущихся механизмов;
  • нагревом помещения прямыми солнечными лучами, особенно в летнее время (инсоляция).

Тепловыделения от указанных источников нередко превышают теплопотери через наружные ограждения зданий и вызывают повышение температуры воздуха.

При расчете теплового баланса для большинства помещений исходят из того, что все ограждения и оборудование в помещении находятся в состоянии теплового равновесия. То есть, их температура остается неизменной во времени и количество получаемого ими тепла в единицу времени равно количеству теряемого тепла. Разность поступления и потерь тепла определяет теплоизбытки в помещении, которые должны быть компенсированы вентиляцией.

В производственных помещениях избыточное тепло можно определить из уравнения теплового баланса:

где Q o6 , Q 0CB , Q ;I - тепло, выделяемое производственным оборудованием, системой искусственного освещения и работающим персоналом соответственно; Q p - тепло, вносимое солнечной радиацией; (?от Д - теплоотдача естественным путем.

1. Теплопоступления в производственное помещение от оборудования, приводимого в движение электродвигателями. Определяют по формуле:

где Р о6 - установочная мощность электродвигателя, кВт; Г|, - коэффициент использования установочной мощности, равный 0,7...0,9; г| 2 - коэффициент загрузки - отношение средней потребляемой мощности к максимально необходимой, равный 0,5...0,8; г| 3 - коэффициент одновременности работы электродвигателей, равный 0,5... 1; г| 4 - коэффициент, характеризующий долю механической энергии, превратившейся в тепло.

Для приближенного определения теплопоступлений в механических и механосборочных цехах при работе станков без охлаждающей эмульсии значение произведений коэффициентов можно принимать равным 0,25; при работе станков с охлаждающей эмульсией - 0,2; при наличии местных отсосов равным 0,15.

2. Теплопоступления от осветительных установок. Считая, что вся электрическая энергия, затрачиваемая на освещение, переходит в тепловую, количество тепла, поступающего в помещение от искусственного освещения, может быть определено по формуле:

где Е - освещенность, лк; F- площадь помещения, м 2 ; q OCB - удельные выделения тепла, Вт/м 2 на 1 лк освещенности, составляющие: для люминесцентных светильников - 0,05...0,13; для ламп накаливания - 0,13...0,25; Г| осв - доля тепловой энергии, попадающей в помещение.

В тех случаях, когда арматура и лампы находятся вне помещения (за остекленной поверхностью, в потоке вытяжного воздуха), доля тепловой энергии, попадающей в помещение, составляет для люминесцентных светильников 0,55 потребляемой энергии, для ламп накаливания - примерно 0,85.

3. Теплопоступления от солнечной радиации. Определяют по формуле: где F 0CT - площадь поверхности остекления, м 2 ; q 0CT - теплопоступления от солнечной радиации через 1 м 2 поверхности остекления при коэффициенте теплопередачи, равном 1 Вт/(м 2 -К);Л 0СТ - коэффициент остекления.

Значения q OCT в зависимости от географической ориентации поверхности и характеристики окон или фонарей принимается в пределах 70...210; значение коэффициента А ОС1 в зависимости от вида остекления и его защитных свойств - в пределах 0,25... 1,15. При расчетах теплопоступления от солнечной радиации учитываются в тепловом балансе помещений для теплого периода года.

4. Теплопоступление от людей. Зависит в основном от степени тяжести выполняемой ими физической работы и в меньшей мере от температуры помещения и теплозащитных свойств одежды. При расчете вентиляции важно правильно определить отдачу явного тепла (Вт) по формуле:

где (З и - коэффициент, учитывающий интенсивность работы и равный 1 для легкой работы, 1,07 - для работы средней тяжести и 1,15- для тяжелой работы; Р од - коэффициент, учитывающий теплозащитные свойства одежды и равный 1 - для легкой одежды, 0,65 - для обычной одежды и 0,4 - для утепленной одежды; v B - скорость движения воздуха в помещении, м/с; t u - температура помещения, °С.

В табл. 3.1 приведены характеристики тепловыделений одного человека при различных уровнях трудовой активности.

Таблица 3.1

Количество тепла и влаги, выделяемых одним человеком

Выполняемая

работа

Тепло, Вт

Влага, г/ч

полное

явное

при 10 °С

при 10 °С

при 10 °С

В состоянии покоя

Физическая:

средней тяжести

5. Теплопоступления с продуктами сгорания. В результате горения топлива в печах, при газовой сварке, стеклодувных работах и т.п. в помещение частично попадают продукты сгорания, которые загрязняют воздух и одновременно вносят в помещение некоторое количество тепла. Если продукты сгорания выпускаются в цех, теплопос- тупления Q n с (Вт) подсчитываются по формуле:

где Gj - расход топлива, кг/ч; Q P H - низшая рабочая теплота сгорания топлива, кДж/кг; Г| т - коэффициент, учитывающий неполноту сгорания топлива (0,9...0,97).

Влажность воздуха. На ряде производств относительная влажность очень высока (80... 100%). Источниками влаговыделений являются заполненные растворами различные ванны, красильные и промывочные аппараты, емкости с водой и др., особенно если эти растворы подвергаются нагреванию и создаются условия для свободного испарения.

Движение воздуха. Движение воздуха внутри производственных помещений вызывается неравномерным нагреванием воздушных масс в пространстве и вентиляционными установками. Движение воздуха может быть использовано в качестве оздоровительного мероприятия при высокой температуре воздуха и при инфракрасном излучении. Для некоторых производств характерна недостаточная подвижность воздуха, создающая ощущение духоты (текстильная, швейная промышленность и др.).

В зависимости от преобладания теплового или холодового воздействия на организм работающих можно выделить наиболее важные с гигиенической точки зрения комплексы микроклиматических условий (рис. 3.1).


Введение

Микроклиматические условия производственной среды

Влияние показателей микроклимата на организм человека

Оптимальные условия микроклимата

Допустимые условия микроклимата

Заключение

Список литературы

Введение

Состояние здоровья человека, его работоспособность в значительной степени зависят от микроклимата на рабочем месте. Не имея возможности эффективно влиять на протекающие в атмосфере климатообразующие процессы, люди располагают качественными системами управления факторами воздушной среды внутри производственных помещений.

Микроклимат производственных помещений - это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а также температурой окружающих поверхностей (ГОСТ 12.1.005 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений").

Факторы, влияющие на микроклимат, можно разделить на две группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и др.). Для поддержания параметров воздушной среды рабочих зон в пределах гигиенических норм решающее значение принадлежит факторам второй группы.

Многочисленными исследованиями гигиенистов и физиологов труда установлено, что на организм человека оказывают значительное воздействие санитарно-гигиенические факторы производственной среды: метеорологические условия, шум, вибрация, освещенность Некоторые из них оказывают неблагоприятное влияние на работника, что снижает работоспособность, ухудшает состояние здоровья и иногда приводит к профессиональным заболеваниям. Поэтому необходимо знать не только причину возникновения этих факторов, но и иметь представление о способах уменьшения их отрицательного влияния на организм работающих. Особое внимание в данной работе уделяется изучению параметров микроклимата на рабочем месте, их влиянию на организм работающих, а также мероприятий по снижению их негативного воздействия.

Актуальность темы в том, что исключительно важную роль на состояние и самочувствие человека, на его работоспособность оказывает микроклимат, а требования к отоплению, вентиляции и кондинционированию непосредственно влияет на здоровье и производительность человека.

Целью данной работы было изучение нормативной и технической литературы, регламентирующей правила и нормы метеорологических условий рабочей зоны, исследование непосредственного влияния на организм работающих параметров микроклимата производственных помещений, а также проектирование систем защиты организма работающих от их негативного воздействия на примере использования систем вентиляции, кондиционирования и отопления, архитектурно-планировочных мероприятий.

Микроклиматические условия производственной среды

На здоровье человека существенное влияние оказывают микроклиматические условия производственной среды, которые складываются из температуры окружающего воздуха, его влажности, скорости движения и излучений от нагретых предметов.

Как известно, работающие примерно треть времени находятся на производства при осуществлении технологических процессов (бурения скважин, добычи, подготовки, транспорта, хранения нефти, природного газа и газоконденсата) и других производственных процессов возможны выделения в воздушную среду вредных углеводородных газов и паров, образование шума, вибрации, повышение или понижение температуры, влажности и т.д. Эти факторы могут встречаться в разных сочетаниях и, если их не устранить, то даже при наличии средств индивидуальной и коллективной защиты в определенных условиях возможны неблагоприятные воздействия на организм человека.

Для исключения вредного воздействия условий труда на предприятиях постоянно проводится работа по количественной оценке основных производственных факторов. Сравнивая полученные показатели с предельно допустимыми значениями санитарных норм (СН-245-71 «Санитарные нормы проектирования промышленных предприятий», ГОСТ, ССБТ и др.), разрабатывают мероприятия по оздоровлению условий труда и, таким образом, приводят санитарно-техническое состояние объектов рабочих мест в соответствие с нормативными условиями.

К одному из основных исходных мероприятий в этом направлении относится паспортизация санитарно-технического состояния условий труда.

микроклимат организм работоспособность зона

2. Влияние показателей микроклимата на организм человека

Для создания благоприятных условий работы, соответствующих физиологическим потребностям человеческого организма, санитарные нормы устанавливают оптимальные и допустимые метеорологические условия в рабочей зоне помещения.

Показателями, характеризующими микроклимат в производственных помещениях, являются:

температура воздуха;

температура поверхностей;

относительная влажность воздуха;

скорость движения воздуха;

интенсивность теплового облучения.

Кроме этих параметров, являющихся основными, не следует забывать об атмосферном давлении Р, которое влияет на парциальное давление основных компонентов воздуха (кислорода и азота), а, следовательно, и на процесс дыхания.

Жизнедеятельность человека может проходить в довольно широком диапазоне давлений 734 - 1267 гПа (550 - 950 мм рт. ст.). Однако здесь необходимо учитывать, что для здоровья человека опасно быстрое изменение давления, а не сама величина этого давления. Например, быстрое снижение давления всего на несколько гектопаскалей по отношению к нормальной величине 1013 гПа (760 мм рт. ст.) вызывает болезненное ощущение.

К показателям, характеризующим тепловое состояние человека, относятся температура тела, температура поверхности кожи и ее топография, тепло ощущения, количество выделяемого пота, состояние сердечно-сосудистой системы и уровень работоспособности.

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Необходимость учета основных параметров микроклимата может быть объяснена на основании рассмотрения теплового баланса между организмом человека и окружающей средой производственных помещений.

Величина тепловыделения Q организмом человека зависит от степени физического напряжения в определенных метеорологических условиях и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

Отдача теплоты организмом человека в окружающую среду происходит в результате теплопроводности через одежду Qт, конвекции у тела Qк, излучения на окружающие поверхности Qи, испарения влаги с поверхности кожи Qисп. Часть теплоты расходуется на нагрев вдыхаемого воздуха Qв.

Нормальное тепловое самочувствие (комфортные условия), соответствующее данному виду работы, обеспечивается при соблюдении теплового баланса:

Qт+Qк+Qи+Qисп+Qв

поэтому температура внутренних органов человека остается постоянной (36,0°-37,0° С). Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией.

Чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и как следствие к потере трудоспособности, быстрому утомлению, потере сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела (внутренних органов) около 36,5 °С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха она может повышаться от нескольких десятых градуса до 1...2°С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная - 25 °С.

Температура тела человека характеризует процесс терморегуляции организма. Она зависит от скорости потери теплоты, которая, в свою очередь, зависит от температуры и влажности воздуха, скорости его движения, наличия тепловых излучений и теплозащитных свойств одежды. Выполнение работ категорий Пб и III сопровождается повышением температуры тела на 0,3...0,5 °С. При повышении температуры тела на 1°С начинает ухудшаться самочувствие, появляются вялость, раздражительность, учащаются пульс и дыхание, снижается внимательность, растет вероятность несчастных случаев. При температуре 39 °С человек может упасть в обморок.

Сердечно-сосудистая система испытывает большое напряжение при выполнении тяжелой работы в условиях повышенных температур. Нарушается водный обмен, сгущается кровь, усиливается ее приток к коже и подкожной жировой клетчатке, расширяются периферические сосуды, учащается пульс и снижается артериальное давление. При одной и той же физической нагрузке частота пульса тем больше, чем выше температура окружающего человека воздуха.

Работоспособность человека в значительной степени снижается при труде в условиях, сильно отличающихся от комфортных. Отрицательное влияние соответствующих параметров микроклимата на центральную нервную систему, другие органы и системы проявляется в ослаблении внимания, замедлении реакций, ухудшении координации движений, в результате чего уменьшается производительность труда и могут возникать травмы. В отдельных случаях работа при высокой температуре воздуха ведет к снижению производительности труда до 80 % по сравнению с аналогичным показателем, зафиксированным в комфортных условиях.

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Установлено, что при температуре воздуха более 30 °С работоспособность человека начинает падать. Предельная температура вдыхаемого воздуха при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116°С.

Для восстановления водного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной газированной питьевой водой из расчета 4...5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма-гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.

Движение воздуха в помещениях является важным фактором, влияющим на тепловое самочувствие человека. В жарком помещении движение воздуха способствует увеличению отдачи теплоты организмом и улучшает его состояние, но оказывает неблагоприятное воздействие при низкой температуре воздуха в холодный период года.

Таблица 1. Классификация работ по тяжести

Оптимальные условия микроклимата

Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Оптимальные величины показателей микроклимата необходимо соблюдать на рабочих местах производственных помещений (ГОСТ 12.1.005-88, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.). Перечень других рабочих мест и видов работ, при которых должны обеспечиваться оптимальные величины микроклимата определяются Санитарными правилами по отдельным отраслям промышленности и другими документами, согласованными с органами Государственного санитарно-эпидемиологического надзора в установленном порядке.

Оптимальные параметры микроклимата на рабочих местах должны соответствовать величинам, приведенным в табл.1, применительно к выполнению работ различных категорий в холодный и теплый периоды года.

Перепады температуры воздуха по высоте и по горизонтали, а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны превышать 2°С и выходить за пределы величин, указанных в табл.2 для отдельных категорий работ.

Таблица 2. Оптимальные величины показателей микроклимата на рабочих местах производственных помещений

Допустимые условия микроклимата

Допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей сиены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности.

Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные величины.

Допустимые величины показателей микроклимата на рабочих местах должны соответствовать значениям, приведенным в табл.2 применительно к выполнению работ различных категорий в холодный и теплый периоды года(ГОСТ 12.1.005-88).

При обеспечении допустимых величин микроклимата на рабочих местах:

перепад температуры воздуха по высоте должен быть не более 3° С;

перепад температуры воздуха по горизонтали, а также ее изменения в течение смены не должны превышать:

При этом абсолютные значения температуры воздуха не должны выходить за пределы величин, указанных в табл.2 для отдельных категорий работ.

При температуре воздуха на рабочих местах 25° С и выше максимально допустимые величины относительной влажности воздуха не должны выходить за пределы:

% - при температуре воздуха 25°С;

% - при температуре воздуха 27°С;

% - при температуре воздуха 28°С.

При температуре воздуха 26-28°С скорость движения воздуха, указанная в табл.3 для теплого периода года, должна соответствовать диапазону:

Таблица 3. Допустимые величины показателей микроклимата на рабочих местах производственных помещений

Допустимые величины интенсивности теплового облучения работающих на рабочих местах от производственных источников, нагретых до темного свечения (материалов, изделий и др.) должны соответствовать значениям, приведенным в табл.5.

Таблица 5. Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников

Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.) не должны превышать 140 Вт/кв.м. При этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

При наличии теплового облучения работающих температура воздуха на рабочих местах не должна превышать в зависимости от категории работ следующих величин:

В производственных помещениях, в которых допустимые нормативные величины показателей микроклимата невозможно установить из-за технологических требований к производственному процессу или экономически обоснованной нецелесообразности, условия микроклимата следует рассматривать как вредные и опасные. В целях профилактики неблагоприятного воздействия микроклимата должны быть использованы защитные мероприятия (например, системы местного кондиционирования воздуха, воздушное душирование, компенсация неблагоприятного воздействия одного параметра микроклимата изменением другого, спецодежда и другие средства индивидуальной защиты, помещения для отдыха и обогревания, регламентация времени работы, в частности, перерывы в работе, сокращение рабочего дня, увеличение продолжительности отпуска, уменьшение стажа работы и др.).

Для оценки сочетанного воздействия параметров микроклимата в целях осуществления мероприятий по защите работающих от возможного перегревания рекомендуется использовать интегральный показатель тепловой нагрузки среды (ТНС).(10)

Заключение

Микроклимат производственных помещений определяется сочетанием температуры, влажности, подвижности воздуха, температуры окружающих поверхностей и их тепловым излучением, а также атмосферного давления. Параметры микроклимата определяют теплообмен организма человека и оказывают существенное влияние на функциональное состояние различных систем организма, самочувствие, работоспособность и здоровье. Параметры микроклимата производственных помещений зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий отопления и вентиляции.

Борьба с неблагоприятным влиянием производственного микроклимата осуществляется с использованием архитектурно-планировочных, инженерно-технологических, санитарно-технических, медико-профилактических и организационных мероприятий.

В профилактике вредного влияния высоких температур инфракрасного излучения ведущая роль принадлежит технологическим мероприятиям: замена старых и внедрение новых технологических процессов и оборудования, автоматизация и механизация процессов, дистанционное управление, использование систем вентиляции и кондиционирования.

Для предупреждения попадания в производственные помещения холодного воздуха необходимо оборудовать у входных ворот воздушные завесы, тамбуры-шлюзы.

При невозможности обогрева всего здания применяется воздушное и лучистое отопление. При работе на открытом воздухе в холодных климатических зонах страны устраиваются перерывы на обогрев в специально оборудованных тепловых помещениях.

В профилактике переохлаждения важную роль играет спецодежда, обувь, рукавицы (из шерсти, меха, искусственных тканей с теплозащитными свойствами, обогревающая одежда).

Способами улучшения метеорологических условий на рабочем месте является устройство систем искусственной вентиляции, кондиционирования и отопления производственных помещений.

Список литературы

1. «Охрана труда в нефтяной и газовой промышленности» П.В. Куцын - М.: Недра, 1987

.«Безопасность жизнедеятельности (медико-биологические основы)» Феоктистова О.Г., Феоктистова Т.Г, Экзерцева Е.В., - М.:Феникс, 2006.

3.«Безопасность жизнедеятельности» С.В. Белова. - М.: Высш. шк., 2000.

4. «Безопасность жизнедеятельности на производстве» Б.И. Зотов, В.И. Курдюмов - М.:КолосС, 2004.

В условиях промышленного производства на человека нередко воздействуют низкая или высокая температура, сильное тепловое излучение, пыль, вредные химические вещества, шум, вибрация, электромагнитные волны, а также разнообразные сочетания этих факторов, которые могут привести к нарушению состояния здоровья, к снижению работоспособности.

Производственный микроклимат характеризуется уровнем температуры и влажности воздуха, скоростью его движения, интенсивностью радиации преимущественно в инфракрасной и частично в ультрафиолетовой областях спектра электромагнитных излучений.

Микроклимат можно классифицировать следующим образом:

а) комфортный (сборочные цехи, операторские);

б) с повышенной влажностью, при нормальной и низкой температуре воздуха (рыбообрабатывающие цехи), при высокой температуре воздуха (красильные цеха);

в) переменный (при работе на открытом воздухе);

г) нагревающий с преобладанием радиационного тепла (прокатные, литейные цеха) и с преобладанием конвекционного тепла (химические цехи и др.);

д) охлаждающий с субнормальными температурами воздуха (от

10º С до - 10º С – судостроительное производство) и с низкими температурами воздуха (ниже - 10º С – холодильные камеры).

Показателями, характеризующими микроклимат в производственных помещениях, являются температура воздуха, температура поверхностей, относительная влажность воздуха, скорость движения воздуха, интенсивность теплового облучения.

Постановлением Госкомсанэпиднадзора России от 01.10.1996 г. № 21 утверждены санитарные правила и норма (СанПиН 2.2.548-96) «Гигиенические требования к микроклимату производственных помещений», которые предназначены для предотвращения неблагоприятного воздействия микроклимата рабочих мест, производственных помещений на самочувствие, функциональное состояние, работоспособность и здоровье человека.

Санитарные правила устанавливают гигиенические требования к показаниям микроклимата рабочих мест, производственных помещений с учётом интенсивности энергозатрат работающих, времени выполнения работы, периодов года и содержат требования к методам измерения и контроля микроклиматических условий.

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Производственный шум. Почти каждый производственный процесс сопровождается шумом. Шум, в зависимости от частоты звука, может вызвать повреждение слуха. Чем выше частота звука, тем сильнее его повреждающее действие.

Борьба с производственным шумом является актуальной и в то же время сложной проблемой. Задача состоит в том, чтобы свести интенсивность шума к минимальной. В помещениях, где осуществляется умственный труд, уровень звука не должен превышать 50 дБ, в помещениях управления – 60 дБ, в помещениях, где находятся источники шума – 80-85 дБ. Кроме этого предусматриваются поправки на длительность действия и характер шума. Борясь с шумом, необходимо, прежде всего, устранить причины шумообразования, изменив, например, технологические процессы. Так, замена штамповки обработкой давлением, клепки котлов электросваркой позволила ликвидировать распространённую в прошлом профессиональную болезнь – глухоту котельщиков. В настоящее время разработано много приёмов, позволяющих конструировать станки, которые создают ничтожный шум при работе. Часто для уменьшения шума следует подтянуть болты, лучше отрегулировать станок или ликвидировать неисправности.


Для снижения шума принимают меры, ведущие к поглощению шума. Цеха, в которых ведутся шумные работы, размещаются в отдельных зданиях или на периферии заводского здания – в пристройке. Стены таких цехов должны быть капитальными, из звукопоглощающих материалов. Если возможно, то источники шума помещают в звукоизолирующие кабины или облицовывают звукопоглощающим материалом, обычно деревом или асбестом.

В качестве мер индивидуальной защиты применяют противошумы (антифоны). Внутренние противошумы – это тампоны из ваты, иногда пропитанные воском, а также специальные резиновые вкладыши, которые вставляют в наружный слуховой проход. Такие пртивошумы вызывают неприятные ощущения инородного тела в ухе и могут раздражать стенки слухового прохода. Более гигиеничны наружные противошумы, представляющие собой наушники из звукопоглощающих материалов (войлок, губчатая резина и др.), они снижают шум на 20-25 дБ. Использование противошумов даже в течение 2-3 ч за период рабочего дня является эффективным мероприятием по предупреждению вредного действия шума.

Вибрация. Действию вибрации подвергаются лица многих профессий, обслуживающих вибрационные инструменты, пневматические или паровые молоты, штамповальные станки, транспортные средства, тракторы, комбайны, бульдозеры и др. Действие вибрации зависит от частоты и амплитуды колебательных движений, а также от ускорения. При игнорировании профилактических мер, вибрация вызывает функциональные и органические изменения в различных отделах нервной системы и ряд специфических нарушений, объединяемых в клиническую картину так называемой вибрационной болезни. Различают несколько форм вибрационной болезни: от воздействия локальной (например, на верхние конечности), общей и комбинированной вибрации.

Воздействие преимущественно локальной вибрации, например, при работе с пневматическим инструментом, приводит к ангионеврозу, проявляющемуся в чувстве онемения, побледнения кожи на кистях рук и болях в пальцах – феномен «белых пальцев». При работе с отбойными молотками в основном поражаются опорно-двигательный и нервно-мышечный аппараты. Чаще поражаются опорно-двигательный аппарат кисти, локтевой и плечевой суставы. При рентгенографии обнаруживаются остеопороз и другие трофические расстройства. Наблюдаются расстройства со стороны центральной нервной (головные боли, раздражительность, головокружение, обморочные состояния и др.) и эндокринной систем.

При действии общей вибрации наблюдаются преимущественно признаки поражения ЦНС. Вначале ощущается головная боль, быстрая утомляемость, общая слабость. Затем появляются так называемые вегетативные кризы: периодически наступающее состояние «дурноты» (слабость, тошнота, холодный пот), приступы боли в области головы, сердца, живота. Иногда отмечается неустойчивость психики – депрессия. При комбинированной форме вибрации наблюдается различное совмещение нарушений, характерных для двух ранее описанных форм. Нередко работающие подвергаются также сочетанному действию вибрации и шума.

Профилактические мероприятия предусматривают:

Устройство под машинами специальных массивных фундаментов, не связанных с фундаментом здания;

Совершенствование машин и инструментов;

Устройство пружинных мягких сидений на тракторах и других машинах;

Конструирование вибробезопасных пневматических ручных инструментов;

Ограничение длительности контакта человека с вибрационными инструментами. Так, санитарными правилами запрещается работа с виброинструментом более 2/3 длительности рабочего дня, предусматриваются 10 – 15-минутные перерывы после каждого часа работы, целесообразна организация комплексных бригад на основе взаимозаменяемости людей на работах, связанных с воздействием вибрации.

В профилактике вибрационной болезни важную роль играет предупреждение переохлаждения.

Из индивидуальных средств защиты при воздействии местной вибрации следует применять рукавицы с двойной ладонной прокладкой, предохраняющие руки от охлаждения, и специальную противовибрационную обувь. После окончания рабочего дня следует принимать тёплые (137º С) ванночки для рук с последующим самомассажем. Рекомендуют также веерный душ на область позвоночника. С целью повышения защитных сил организма назначают производственную гимнастику, профилактическое УФ-облучение (в зимнее время), дополнительный приём витаминов: 2 мг В 1 , 5 – 10 мг РР, 50 мг С.

Проведение периодических медицинских осмотров

Электромагнитные поля диапазона радиочастот. Действие электромагнитных полей широко используются в промышленности, медицине и в различных отраслях науки. Так, излучения сверхвысокой частоты (СВЧ) применяют для радиосвязи, радиолокации, на телевидении, в физиотерапии и для различных научных целей. Излучение ультравысокой частоты (УВЧ) также используется для радиосвязи и в физиотерапии, а высокой частоты (ВЧ) – для термической обработки металлов (закалка, напайка, плавка и др.), для нагрева диэлектриков в высокочастотном электрическом поле (сушка древесины, нагрев пластмасс и их сварка и др.), для нагрева диэлектриков в высокочастотном поле (сушка древесины, нагрев пластмасс и их сварка и др.).

При длительном воздействии электромагнитных полей сверхпороговой напряжённости на человеческий организм наблюдаются функциональные расстройства со стороны центральной нервной и сердечно-сосудистой систем, в частности замедленный ритм сердечных сокращений, понижение артериального давления, нарушение обменных процессов.

Предупреждение вредного действия полей электромагнитных излучений заключается в следующем.

1) Все источники полей необходимо максимально экранировать металлическими кожухами или перегородками (сплошными или из мелкоячеистой сетки).

2) Для защиты медицинского персонала физиотерапевтических кабинетов рекомендуется помещать ВЧ-аппараты в экранирующие кабинеты, использовать передвижные и стационарные экраны, а также дистанционное управление аппаратами, что часто применяют в промышленности.

3) Для защиты от излучений могут также применяться костюмы из металлизированной ткани, шлемы из металлической сетки и специальные защитные очки (в виде полумаски) из мелкой латунной сетки или со стёклами с тончайшим покрытием из золота или диоксида олова.

4) В рабочих помещениях следует систематически измерять напряжённость электромагнитного поля и предусматривать предотвращение попадания персонала в опасные зоны.

5) путём соответствующей организации труда ограничивают время пребывания работающих в напряжённом электромагнитном поле.

6) Проводят предварительные и периодические медицинские осмотры работающих.

Производственная пыль. Одним из основных факторов, способствующих возникновению профессиональных заболеваний, является пыль. Это обусловлено образованием большого количества пыли при многих производственных процессах: размоле, шлифовке, сверлении, дроблении, просеивании, электросварке, при взрывных работах и транспортировке пылящихся материалов.

Степень запыленности воздуха выражают в мг пыли на 1 м 3 воздуха. В чистом воздухе пыли содержится менее 0,1 мг/м 3 . С увеличением запыленности воздуха действие пыли на организм увеличивается.

Размер пылинок влияет на продолжительность пребывания их во взвешенном состоянии и глубину проникновения в дыхательные пути. Крупные пылинки, имеющие диаметр свыше 10 мкм, быстро, в течение нескольких минут, выпадают из воздуха. Они задерживаются в верхних отделах дыхательных путей и оказывают вредное действие на слизистую оболочку. Обволакиваясь слизью, задержавшиеся пылинки удаляются из верхних дыхательных путей при чихании и кашле. Часть слизи заглатывается, и, если пыль ядовитая, она может проявить свои токсические действия, всосавшись через слизистую оболочку пищеварительного тракта. Альвеол лёгких крупные пылинки в основном не достигают. Пылинки размером менее 10 мкм могут длительное время находиться во взвешенном состоянии. Они проникают через дыхательные пути в лёгкие, вызывая пневмокониозы - заболевания, в основе которых лежит фиброз лёгкого и связанные с ним изменения.

Наиболее опасным видом пневмокониоза является силикоз, который обусловлен вдыханием кварцевой пыли, содержащей свободный диоксид кремния (на рудниках, при шлифовке литья песком и др.), обладающий сильным фиброгенным действием.

Силикатозы развиваются при вдыхании пыли силикатов, которые представляют собой простые или сложные соединения кремниевой кислоты с окислами металлов. К силикатам принадлежат пыль асбеста, талька, нефелина, стеклянного волокна, шлаковаты и др. Клиническая картина каждого силикатоза своеобразна; для диагностики решающее значение имеет рентгенография. Наиболее тяжёлым силикатозом является асбестоз, он часто (7 – 15%) сопровождается бронхогенным раком лёгких.

Антракоз развивается медленно (15 – 20 лет) обычно у рабочих угольных шахт. Развитие процесса зависит от наличия примеси к углю кремнезема. Поэтому практически у рабочих шахт чаще может быть пневмокониоз смешанной формы, т.е. антракосиликоз.

Считают, что основная причина возникновения пневмокониозов – длительное ингаляционное действие производственной пыли размером от 0,1 до 5 мкм (из них основную массу составляют пылинки размером 1 – 2 мкм). При дыхании через рот или при глубоком дыхании во время тяжёлой физической работы в лёгкие проникает больше пыли. Крупные твёрдые пылевые частицы диаметром более 10 мкм при наличии острых граней или зазубренных краев (стекло, кварц, железные спилки) могут травмировать слизистую оболочку верхних дыхательных путей сильнее, чем мягкие пылинки с гладкими, тупыми краями.

Неспецифические заболевания, вызываемые производственной пылью, многообразны. Попадая в глаз, пыль оказывает раздражающее действие. К этому может присоединяться действие микроорганизмов, в результате чего возникают конъюнктивиты и кератиты. Фтористая, хромовая, известковая и некоторые другие виды пыли, обладающие раздражающим свойством, могут вызывать изъявления слизистой оболочки носа и носовые кровотечения. При длительном воздействии пыли на слизистые оболочки верхних дыхательных путей вначале развивается гипертрофический катар (ринит, трахеит, бронхит).

Закупоривая протоки потовых и сальных желез, пыль нарушает потоотделение и может способствовать возникновению фолликулитов, угрей и других гнойничковых заболеваний кожи. Пыль, содержащая токсические вещества, вызывает отравления; пыль с примесью радионуклидов ведёт к лучевой болезни и раку лёгких; инфицированная пыль может быть причиной заболевания туберкулёзом, антиномикозом, сибирской язвой и др.

Борьба с пылью и предупреждение «пылевой» патологии являются серьёзной задачей гигиены труда. По гигиеническим нормативам содержание пыли (неотоксической) в воздухе производственных помещений не должно превышать 10 мг/м 3 . Если в пыли до 10 % свободной кремниевой кислоты, то её ПДК составляет 4 мг/м 3 , если до 70 % - 2 мг/м 3 , если более 70 % - 1 мг/м 3 .

Можно освободиться от пыли путём:

Изменения технологии производства. Например, вместо шлифовки литья пескоструйным аппаратом в настоящее время на многих заводах и фабриках шлифовку осуществляют с помощью сильной струи воды и дроби;

Замена сухих способов работы влажными (орошение отбитой руды, мокрое бурение, мокрая шлифовка изделий);

Места пылеобразования максимально укрывают кожухами, соединёнными с воздуховодами вытяжной вентиляции.

Большое количество пыли оседает на пол производственных помещений. Регулярной уборкой помещений влажным способом или пылесосами можно предупредить вторичное взвешивание пылевых частиц в воздухе помещений.

Если перечисленные мероприятия не дают нужного эффекта или неприменимы на данном производстве, то приходится прибегать к мерам индивидуальной защиты. Для защиты глаз применяют противопылевые очки, для защиты дыхательных путей – ватно-марлевые повязки или противопылевые респираторы, в которых пыль задерживается на тканевом, бумажном или асбестовом фильтре, для защиты кожи – противопылевые комбинезоны.

Спецодежду и нательное бельё необходимо часто стирать, особенно если пыль обладает раздражающим свойством. После работы следует мыться под душем.

К профилактическим мероприятиям относятся ингаляция аэрозолями щелочных растворов по окончании рабочего дня и профилактическое УФ-облучение. Эти процедуры проводят в ингаляториях, устраиваемых при здравпунктах и фотариях, на производствах, где возможно вредное воздействие пыли на работающих, особенно кварцевой.

Систематически осуществляются медицинские осмотры рабочих с рентгенографией и флюорографией лёгких для выявления ранних стадий заболеваний.

Хронические заболевания органов дыхания являются основными противопоказаниями для приёма на работу, при которой возможно действие пыли на организм.

Производственные яды и отравления. Опаснейшей профессиональной вредностью являются производственные яды – вещества, которые, проникая в организм в сравнительно небольших количествах, нарушают его нормальную жизнедеятельность и обуславливают различные болезненные состояния.

Производственные отравления могут быть острыми и хроническими.

Острыми отравления называют в том случае, когда они возникают после воздействия токсического вещества в течение короткого времени, не более одной рабочей смены.

Хронические отравления возникают в результате длительного воздействия на организм малых количеств отравляющих веществ. Такие отравления развиваются постепенно. На ранних стадиях их трудно распознать, поскольку симптомы их малоспецифичны: недомогание, повышенная утомляемость, нарушение аппетита и сна, малокровие, ослабление сопротивляемости внешним воздействиям. Предупреждение даже самых слабых хронических отравлений является важнейшей задачей медицинских работников. Эта задача особо актуальна в настоящее время в связи с химизацией народного хозяйства и быта.

Характер и степень выраженности изменений, вызываемых в организме действием производственных ядов, определяется многими факторами: химическими свойствами и строением вещества, концентрацией и физическим состоянием яда, путями проникновения его в организм, количеством яда, резорбированного организмом, продолжительностью действия. Имеет значение тяжесть выполняемых работ, поскольку от этого зависит количество вдыхаемого воздуха. Действие яда зависит также от физиологического состояния и защитных сил организма. Переутомление, нерациональное питание, дефицит ультрафиолетовых лучей, перегрев, алкоголизм усиливают интоксикацию. Растущий организм, беременная и кормящая женщина также более уязвимы.

Производственные яды могут находиться в жидком, пылевидном, газообразном и парообразном состояниях. Газообразные и парообразные яды воздействуют на организм преимущественно через дыхательные пути. Это путь наиболее частый и опасный, поскольку дыхательные пути трудно защитить от загрязнённого токсическими веществами воздуха, а вследствие большой суммарной поверхности лёгочных альвеол создаются условия для быстрого всасывания яда в кровь. Некоторые газо- и парообразные яды могут оказывать и местное раздражающее действие на слизистые оболочки верхних дыхательных путей, конъюнктиву глаз и кожу, особенно в местах, влажных от пота.

Пылевидные яды проникают в организм теми же путями, что и газообразные, но, кроме того, они могут поступать в организм через пищеварительный тракт при заглатывании носоглоточной слизи, а также при курении и приёме пищи немытыми руками.

Жидкие яды влияют преимущественно на наружные покровы тела. Вещества, хорошо растворимые в жирах, способны проникать в кровь через неповреждённую кожу (бензол, нитробензол, бензин, тетраэтилсвинец). Некоторые жидкие яды образуют пары даже при комнатной температуре.

Поступившие в организм яды подвергаются различным химическим превращениям, в результате чего многие полностью или частично обеззараживаются. Важную роль в обеззараживании ядов играет печень. Яды и продукты их превращения выделяются из организма человека через лёгкие, почки, желудочно-кишечный тракт и кожу. Если в организм поступает яда больше, чем выделяется и обезвреживается, то он накапливается в организме, что усиливает его действие.

К распространённым промышленным ядам относятся оксид углерода (1), свинец, сернистый ангидрид, сероуглерод, оксиды азота, фторсодержащие соединения, ртуть (пары), соли мышьяка, соединения хрома, бензол, бензин, нитросоединения, тетраэтилсвинец, агрохимикаты и др.

Для предупреждения производственных отравлений наиболее радикальной мерой является:

Полное устранение яда из производства и замена его менее ядовитыми соединениями.

На производствах, где невозможно исключить работу с вредными веществами, большое значение приобретает механизация, автоматизация и тщательная герметизация производственных процессов.

Для удаления ядовитых газов и пыли непосредственно у мест их выделения используют местную вентиляцию (вытяжные шкафы, бортовые отсосы). В необходимых случаях местную вентиляцию дополняют общеобменной.

Процессы, связанные с загрязнением среды ядовитыми веществами, проводят в изолированных помещениях, стены, полы и потолки которых обшивают материалами, не впитывающими ядовитые вещества и легко очищающимися от них.

Из мер индивидуальной защиты в зависимости от свойств ядовитого вещества и путей воздействия его на организм применяют различные виды спецодежды, резиновые перчатки и сапоги, защитные очки, ватно-марлевые повязки, противопылевые респираторы, фильтрующие противогазы, изолирующие противогазы с кислородными приборами и скафандрами.

Ознакомившись с технологией производства и выяснив, какие вещества могут воздействовать на работающих, медицинские работники обязаны обеспечить здравпункт предприятия и санитарные посты все необходимым для оказания первой помощи при случайных отравлениях. Лиц, по состоянию здоровья особо чувствительных к действию химических соединений, применяемых на данном производстве, к работе не допускают. Существует список производств, на которых не разрешается работать подросткам до 18 лет, беременным женщинам и кормящим матерям.

Для своевременного выявления ранних стадий хронических отравлений и предупреждения их развития осуществляют периодические медицинские осмотры. Они зависят от токсических свойств производственных ядов, их проводят в основном каждые 6 или 12 месяцев, а при некоторых работах чаще. Выявление ранних стадий хронических отравлений очень сложно, поэтому к проведению медицинских осмотров в обязательном порядке привлекают в зависимости от характера действия яда врачей соответствующих специальностей. Для облегчения диагностики медицинские осмотры сопровождают необходимыми функциональными лабораторными исследованиями крови, мочи и др. На тех производствах, где воздух загрязнён веществами, раздражающими слизистые оболочки верхних дыхательных путей, рабочие получают масляные ингаляции.

Медицинские работники обязаны осуществлять систематический контроль за содержанием веществ в воздухе производственных помещений, привлекая к нему заводские и санитарные лаборатории.

В целях эффективной борьбы с профессиональными отравлениями все случаи их возникновения необходимо регистрировать и тщательно расследовать медицинскими работниками совместно с представителями администрации и профсоюзной организации. Большое значение имеет соблюдение рабочими правил личной гигиены. Рабочую одежду следует оставлять в производственном помещении и здесь же необходимо организовать систематическую стирку её. Перед приёмом пищи, курением и питьём воды рабочие должны тщательно вымыть руки, лицо и прополоскать рот. На ряде производств по окончании работы необходимо принять душ и сменить нательное бельё. На многих производствах рабочие бесплатно получают в качестве профилактического питания молоко. Оно значительно увеличивает физиологическую ценность обычного пищеварительного рациона и благодаря этому способствует повышению защитных сил организма. Для рабочих ряда производств разработано пять специальных рационов профилактического питания.

Ионизирующие излучения. Ионизирующие излучения являются особо опасным фактором производственной среды, поскольку они невидны, не обнаруживаются органами чувств, не вызывают болезненных ощущений даже при воздействии опасных для жизни доз, способны проникать через ограждения помещений и другие экраны. Вместе с тем источники ионизирующих излучений в настоящее время широко применяются в медицине (рентгенодиагностика, радиотерапия), науке и народном хозяйстве. Основными документами, регламентирующими гигиену труда с ними и охрану окружающей среды от загрязнения радионуклидами, являются «Нормы радиационной безопасности» (НРБ-76/87) и «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» 10СП-72/87).

Источники ионизирующих излучений делят на закрытые и открытые. При закрытых (рентгеновский аппарат, гамма-излучатель, бетатрон и др.) окружающая среда не загрязняется радионуклидами, при открытых (непосредственно радионуклиды) загрязняется.

При работе с источниками ионизирующего излучения возможно три вида воздействия на человека: внешнее облучение всего тела или его части (рентгеновским излучением, γ-лучами, нейтронами и др.), внутреннее облучение при поступлении в организм радиоактивных веществ (открытые источники) и смешанное. Радиоактивные вещества могут поступать в организм с пищей, а также в виде газов, паров, аэрозолей и в жидком виде через дыхательные пути, пищевой канал, кожу. При попадании внутрь наиболее опасны α-излучатели из-за создания большой плотности и ионизации.

При работе с источниками ионизирующего излучения закрытого типа основными принципами профилактики являются защита количеством, временем, расстоянием, экранированием. Защита количеством заключается в проведении работы с как можно менее интенсивным источником излучения. Защита временем сводится к уменьшению продолжительности облучения персонала за счёт ограничения длительности рабочего дня и количества выполняемых за смену процедур, правильной организации работы и продуманной технологии выполнения тех или иных операций, повышения квалификации персонала и его тренировки.

Защита расстоянием основана на том, что мощность облучения обратно пропорциональна квадрату расстояния между источником (точечным) излучения и рабочим местом.

Производственный травматизм. Под производственной травмой понимают повреждения внезапного характера, непосредственно связанные с воздействием производственного фактора, нарушающие анатомическую целостность органа (или всего организма) либо вызывающие нарушение его физиологических функций, произошедшие в цехе или других производственных помещениях или на территории предприятия, а также травмы, полученные в пути на работу и с работы.

Различают:

Механические травмы с повреждением тканей;

Микротравмы;

Термические ожоги и отморожения;

Химические травмы;

Электротравмы.

Медработники промышленного предприятия выясняют причину возникновения травмы, проводят их регистрацию и учёт, проводят сан-просвет работу по пропаганде мероприятий в борьбе с производственным травматизмом.

Микроклимат производственных помещений - это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а так - же интенсивностью теплового излучения.

Неблагоприятное сочетание параметров микроклимата может вызвать перенапряжение механизмов терморегуляции, перегрев и переохлаждение организма.

Факторы, влияющие на микроклимат, можно разделить на две группы:

Нерегулируемые (комплекс климатообразующих факторов данной местности)

Регулируемые (особенности и качество строительства зданий, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и т.д.)

Санитарными нормами установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические нормы характеризуются сочетанием таких параметров микроклимата, которые обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции, создают ощущение теплового комфорта и предпосылки высокой работоспособности.

Допустимые микроклиматические нормы характеризуются сочетанием величин параметров микроклимата, которые могут вызвать изменение теплового состояния организма, сопровождающееся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений и нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности. Допустимые нормы устанавливают в тех производственных помещениях, в которых по технологическим, техническим и экономическим причинам невозможно оптимальные нормы.

К параметрам микроклимата производственного помещения относится: температура воздуха (20-25 0 С), скорость движения воздуха (0,2-0,3 м/с), относительная влажность (40-60 %) барометрическое давление (760 мм.рт.ст) и тепловое излучение от нагретых поверхностей.

Температура воздуха. Высокая температура воздуха вызывает быструю утомляемость организма, расслабление тела, снижение внимания, приводит к перегреву организма. В холодное время при выполнении, например сварочных, кузовных работ вне помещения или в неотапливаемом помещении возможно воздействие низких температур, что может вызвать охлаждение организма, стать причиной простудных заболеваний, возможны случаи отморожения частей тела (пальцы рук, ног, щеки, уши).

Влажность воздуха оценивается содержанием в нем водяных паров. Повышенная влажность воздуха приводит к нарушению терморегуляции организма, к его перегреванию при высокой температуре. Низкая относительная влажность воздуха приводит к ускорению отдачи тепла, высыханию слизистых оболочек верхних дыхательных путей.


Движение воздуха. Человек начинает ощущать движение воздуха при скорости 0,1 м/с. легкое движение воздуха при обычных температурах способствует хорошему самочувствию. Большая скорость движения воздуха, особенно при низких температурах, приводит к сквознякам и простудным заболеваниям (радикулиты, миозиты и т.д.).

Тепловое излучение (лучистая энергия) выделяется в пространство вследствие сильного нагрева различного оборудования. Источниками лучистой энергии являются: нагревательные печи, кузнечные горны, термические и закалочные ванны, сварочные работы. Потоки тепловых излучений состоят из инфракрасных лучей. В результате проникновения лучистой энергии повышается температура кожи и глубоко лежащих тканей на облучаемом участке, нарушается работа сердца, понижает давление. При сварочных работах воздействуют инфракрасные лучи длиной 0,7-1,5 мкм (лучи Фохта), которые вызывают катаракту глаз.

Для нормализации температурно-влажностного режима применяют:

Системы вентиляции, отопления и кондиционирования воздуха. При правильном выборе их типа, производительности и оптимальной конструкции условия труда на рабочих местах поддерживаются в пределах норм с минимальными затратами средств, труда и энергии;

Механизация и автоматизация производственных процессов, использование более совершенных машин и оборудования позволяет снизить время пребывания людей на рабочих местах с некомфортными параметрами микроклимата, а также ограничить или исключить контакт с вредными производственными факторами;

Теплоизолируют нагревательные поверхности оборудования и устанавливают защитные экраны, чтобы предотвратить избытки теплоты в помещениях;

Организация рационального питьевого режима с целью компенсации потерь организмом влаги и солей, обеспечивая работающих в горячих цехах подсоленной и охлажденной газированной водой;

Использование СИЗ, если значение параметров микроклимата отличается от нормативных. С их помощью можно предотвратить перегрев или переохлаждение организма, а также устранить неблагоприятное воздействие тепловых излучений на органы зрения;

Рациональное чередование периодов труда и отдыха для профилактики отрицательного влияния дискомфортных условий труда.

При низких температурах, особенно в сочетании с высокой подвижностью воздуха, вводят дополнительные перерывы для обогрева работающих. Температуру в помещениях для обогрева поддерживают в пределах 22-24 0 С, что несколько выше значений, предусмотренных для санитарно-бытовых помещений. При выполнении работы в условиях высоких температур продолжительностью дополнительных перерывов должна быть достаточна для восстановления работоспособности и процессов терморегуляции

Вентиляция и виды

Для приведения параметров микроклимата к нормируемым используют воздухообмен, который осуществляется по средствам вентиляции.

Вентиляция - это процесс частичной или полной замены загрязненного воздуха помещений свежим (или чистым) наружным воздухом.

Вентиляция позволяет снизить избыточное количество теплоты, газов, паров, пыли.

Процесс поддержания температуры, влажности и чистоты воздуха в соответствии с санитарно-гигиеническими требованиями, предъявляемыми к производственным помещениямназывается кондиционированием. Одно из основных требований к системе кондиционирования воздуха - регулирование определенных соотношений между четырьмя переменными величинами: температурой воздуха; средневзвешенным значением температуры внутренних поверхностей ограждений (стены, пол, потолок); влажностью воздуха; средней скоростью и равномерностью движения воздуха внутри помещения. Кроме того, системой кондиционирования воздуха должна регулироваться концентрация газов, паров и пыли в помещении. Если система предназначена для создания комфортных условий людям, то она должна также уменьшать запахи, выделяемые человеческим телом.

Для поддержания нормируемой температуры воздуха в производственных помещениях в холодное время года и одновременно регулировать влажность воздуха предназначено отоплению , которое бывает местное и центральное (по радиусу действия).

К системам отопления предъявляют следующие санитарно-гигиенические требования: равномерный прогрев воздуха помещений; возможность регулирования количества выделяемой теплоты и совмещения процессов отопления и вентиляции; отсутствие загрязнения воздуха помещений вредными выделениями и неприятными запахами; пожаро- и взрывобезопасность; удобство в эксплуатации и ремонте.

Устройство вентиляции и отопления, что имеет большое значение для оздоровления воздушной среды в производственных помещениях.

Применение средств индивидуальной защиты.

Вентиляция как средство защиты воздушной среды производственных помещений

Задачей вентиляции является обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха.

По способу перемещения воздуха вентиляция бывает с естественным побуждением (естественной) и с механическим (механической). Возможно также сочетание естественной и механической вентиляции (смешанная вентиляция).

Вентиляция бывает приточной, вытяжной или приточно-вытяжной в зависимости от того, для чего служит система вентиляции , - для подачи (притока) или удаления воздуха из помещения или (и) для того и другого одновременно.

По месту действия вентиляция бывает общеобменной и местной.

Действие общеобменной вентиляции основано на разбавлении загрязненного, нагретого, влажного воздуха помещения свежим воздухом до предельно допустимых норм. Эту систему вентиляции наиболее часто применяют в случаях, когда вредные вещества, теплота, влага выделяются равномерно по всему помещению. При такой вентиляции обеспечивается поддержание необходимых параметров воздушной Среды во всем объеме помещения.

Воздухообмен в помещении можно значительно сократить, если улавливать вредные вещества в местах их выделения. С этой целью технологическое оборудование, являющееся источником выделения вредных веществ, снабжают специальными устройствами, от которых производится отсос загрязненного воздуха. Такая вентиляция называется местной вытяжкой.

Местная вентиляция по сравнению с общеобменной требует значительно меньших затрат на устройство и эксплуатацию.

В производственных помещениях, в которых возможно внезапное поступление в воздух рабочей зоны больших количеств вредных паров и газов, наряду с рабочей предусматривается устройство аварийной вентиляции.

На производстве часто устраивают комбинированные системы вентиляции (общеобменную с местной, общеобменную с аварийной и т.п.).

Для эффективной работы системы вентиляции важно, чтобы еще на стадии проектирования были выполнены следующие технические и санитарно-гигиенические требования.

1. Количество приточного воздуха должно соответствовать количеству удаляемого (вытяжки); разница между ними должна быть минимальной.

В ряде случаев необходимо так организовать воздухообмен, чтобы одно количество воздуха обязательно было больше другого. Например, при проектировании вентиляции двух смежных помещений, в одном из которых выделяются вредные вещества. Количество удаляемого воздуха из этого помещения должно быть больше количества приточного воздуха, в результате чего в помещении создается небольшое разрежение.

Возможны такие схемы воздухообмена, когда во всем помещении поддерживается избыточное по отношению к атмосферному давление. Например, в цехах электровакуумного производства, для которого особенно важно отсутствие пыли.

2. Приточные и вытяжные системы в помещении должны быть правильно размещены. Свежий воздух необходимо подавать в те части помещения, где количество вредных веществ минимально, а удалять, где выделения максимальны.

Приток воздуха должен производиться, как правило, в рабочую зону, а вытяжка - из верхней зоны помещения.

3. Система вентиляции не должна вызывать переохлаждения или перегрева работающих.

4. Система вентиляции не должна создавать шум на рабочих местах, превышающий предельно допустимые уровни.

5. Система вентиляции должна быть электро-, пожаро- и взрывобезопасна, проста по устройству, надежна в эксплуатации и эффективна.

Естественная вентиляция

Воздухообмен при естественной вентиляции происходит вследствие разности температур воздуха в помещении и наружного воздуха, а также в результате действия ветра.

Естественная вентиляция может быть неорганизованной и организованной.

При неорганизованной вентиляции поступление и удаление воздуха происходит через неплотности и поры наружных ограждений (инфильтрация), через окна, форточки, специальные проемы (проветривание).

Организованная естественная вентиляция осуществляется аэрацией и дефлекторами, и поддается регулировке.

Аэрация. Осуществляется в холодных цехах за счет ветрового давления, а в горячих цехах за счет совместного и раздельного действия гравитационного и ветрового давлений. В летнее время свежий воздух поступает в помещение через нижние проемы, расположенные на небольшой высоте от пола (1-1,5 м), а удаляется через проемы в фонаре здания.

Поступление наружного воздуха в зимнее время осуществляется через проемы, расположенные на высоте 4-7 м от пола. Высота принимается с таким расчетом, чтобы холодный наружный воздух, опускаясь до рабочей зоны, успел достаточно нагреться за счет перемешивания с теплым воздухом помещения. Меняя положение створок, можно регулировать воздухообмен.

При обдувании зданий ветром с наветренной стороны создается повышенное давление воздуха, а на заветренной стороне - разрежение.

Под напором воздуха с наветренной стороны наружный воздух будет поступать через нижние проемы и, распространяясь в нижней части здания, вытеснять более нагретый и загрязненный воздух через проемы в фонаре здания наружу. Таким образом, действие ветра усиливает воздухообмен, происходящий за счет гравитационного давления.

Преимуществом аэрации является то, что большие объемы воздуха подаются и удаляются без применения вентиляторов и воздуховодов. Система аэрации значительно дешевле механических систем вентиляции.

Недостатки: в летнее время эффективность аэрации снижается вследствие повышения температуры наружного воздуха; поступающий в помещение воздух не обрабатывается (не очищается, не охлаждается).

Вентиляция с помощью дефлекторов. Дефлекторы представляют собой специальные насадки, устанавливаемые на вытяжных воздуховодах и использующие энергию ветра. Дефлекторы применяют для удаления загрязненного или перегретого воздуха из помещений сравнительно небольшого объема, а также для местной вентиляции, например, для вытяжки горячих газов от кузнечных горнов, печей и т.д.

В настоящее время наибольшее распространение получил дефлектор ЦАГИ (рис.12).

Рис. 12. Дефлектор ЦАГИ.

1 - диффузор, 2 - цилиндрическая обечайка, 3 - колпак, 4 - конус, 5 - патрубок

Ветер, обдувая обечайку дефлектора, создает разрежение на большей части его окружности, вследствие чего воздух из помещения движется по воздуховоду и патрубку 5 и затем выходит наружу через две кольцевые щели между обечайкой 2 и краями колпака 3 и конуса 4. Эффективность работы дефлекторов зависит главным образом от скорости ветра, а также высоты установки их над коньком крыши.

Механическая вентиляция

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами.

Производственное освещение

Основные светотехнические понятия и единицы

Освещение производственных помещений характеризуется количественными и качественными показателями. К основным количественным показателям относятся: световой поток, сила света, яркость и освещенность.

К основным качественным показателям зрительных условий работы можно отнести: фон, контраст между объектом и фоном, видимость.

Световой поток (Ф) - это мощность светового видимого излучения, которая оценивается глазом человека по световым ощущениям. Единицей светового потока является люмен (лм) световой поток от эталонного точечного источника в одну канделу (международную свечу), расположенного в вершине телесного угла в один стерадиан.

Сила света (1) - это величина, которая определяется отношением светового потока (Ф) к телесному углу (w), в пределах которого световой поток равномерно распределяется:

За единицу силы света принята кандела (кд) - сила света точечного источника, излучающего световой поток в 1лм, который равномерно распределяется внутри телесного угла в 1 стерадиан.

Яркость (В) - определяется как отношение силы света, излучаемого элементом поверхности в данном направлении, к площади светящейся поверхности:

где 1 - сила света, излучаемая поверхностью в заданном направлении.

S - площадь поверхности;

А - угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

Единицей яркости является н и m (нт) - яркость светящейся поверхности, от которой в перпендикулярном направлении излучается свет силой в 1 канделу с 1м 2 .

Освещенность (Е) - отношение светового потока (Ф), падающего на элемент поверхности, к площади этого элемента (S):

Е = Ф/S (2.13)

Ф - световой поток, лм

S - площадь, м 2

За единицу освещенности принят л ю к с (лк) - уровень освещенности поверхности площадью 1 м 2 , на которую падает равномерно распределяясь, световой поток в 1 люмен.

Фон - поверхность, прилегающая непосредственно к объекту различия, на которой он рассматривается. Фон характеризуется коэффициентом отражения поверхности ρ, представляющим собой отношение светового потока, отраженного от поверхности, к световому потоку, падающему на неё. Фон считается светлым при ρ > 0,4, средним - при ρ = 0,2 - 0,4 и темным, если ρ < 0,2.

Контраст между объектом и фоном (k) характеризуется соотношением яркостей рассматриваемого объекта (точка, линия, знак и другие элементы, которые требуется различить в процессе работы) и фона. Контраст между объектом и фоном определяется по формуле:

где В о и В ф соответственно яркости объекта и фона, нт.

Контраст считается большим при к >0,5, средним - при к = 0,2 - 0,5 и малым - при к < 0,2.

Видимость (v) характеризует способность глаза воспринимать объект. Видимость зависит от освещенности, размера объекта различия, его яркости, контраста между объектом и фоном, длительности экспозиции: V = (2.15)

где к - контраст между объектом и фоном;

к пор - пороговый контраст, то есть наименьший контраст, различимый глазом при данных условиях.

Для измерения светотехнических величин применяют люксметры, фотометры, измерители видимости и другие приборы.

В производственных условиях для контроля освещенности рабочих мест и общей освещенности помещений чаще всего используют люксметры типов Ю 116, Ю 117 и универсальный портативный цифровой люксметр-яркомер ТЭС 0693. Работа этих приборов основана на явлении фотоэффекта - превращении световой энергии в электрическую.

Для создания благоприятных условий зрительной работы, исключающих быстрое утомление глаз, возникновение профессиональных заболеваний, несчастных случаев содействующих повышению производительности труда и качества продукции, производственное освещение должно отвечать следующим требованиям:

Создавать на рабочей поверхности освещенность, соответствующую характеру зрительной работы, не ниже установленных норм;

Обеспечить достаточную равномерность и постоянства уровня освещенности в производственных помещениях во избежание частой переадаптации органов зрения;

Не создавать ослепляющего действия как от самих источников освещения, так и от других предметов, находящихся в поле зрения;

Не создавать на рабочей поверхности резких и глубоких теней (особенно подвижных);

Обеспечить достаточный для различия деталей контраст освещаемых поверхностей;

Не создавать опасных и вредных производственных факторов (шум, тепловые излучения, опасность поражения током, пожаро и взрывоопасность светильников);

Должно быть надежным и простым в эксплуатации, экономичным и эстетичным.

В зависимости от источника света производственное освещение может быть естественным, создаваемым прямыми солнечными лучами и рассеянным светом небосвода; искусственным, создаваемым электрическими источниками света и совмещенным, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Естественное освещение подразделяется на: боковое (одно или двухстороннее), которое осуществляется через световые проёмы (окна) в наружных стенах; верхнее, осуществляемое через фонари и световые проемы в крышах и перекрытиях; комбинированное - сочетание верхнего и бокового освещения.

Искусственное освещение может быть общим и комбинированным.

Общим называют освещение, при котором светильники размещаются в верхней зоне помещения (не ниже 2,5 м над полом) равномерно (общее равномерное освещение) или с учетом расположения рабочих мест (общее локализованное освещение). Комбинированное освещение состоит из общего и местного. Его целесообразно применять при работах высокой точности, а также, если необходимо создать определенное или переменное, в процессе работы, направление света. Местное освещение создается светильниками, которые концентрируют световой поток непосредственно на рабочих местах. Применение только местного освещения не допускается, учитывая опасность производственного травматизма и профессиональных заболеваний.

Принцип естественного освещения

ПРИНЦИП НОРМИРОВАНИЯ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ. Естественное освещение используется для общего освещения производственных и подсобных помещений.

Оно создается лучистой энергией солнца и на организм человека действует наиболее благоприятно. Используя этот вид освещения, следует учитывать метеорологические условия и их изменения в течение суток и периодов года в данной местности.

Это необходимо для того, чтобы знать, какое количество естественного света будет попадать в помещение через устраиваемые световые проемы здания: окна — при боковом освещении, световые фонари верхних перекрытий здания — при верхнем освещении. При комбинированном естественном освещении к верхнему освещению добавляется боковое. Помещения с постоянным пребыванием людей должны иметь естественное освещение.

Установленные расчетом размеры световых проемов допускается изменять на +5, -10%. Неравномерность естественного освещения помещений производственных и общественных зданий с верхним или верхним и естественным боковым освещением и основных помещений для детей и подростков при боковом освещении не должна превышать 3:1. Солнцезащитные устройства в общественных и жилых зданиях следует предусматривать в соответствии с главами СНиП по проектированию этих зданий, а также с главами по строительной теплотехнике.

Качество освещения естественным светом характеризуется коэффициентом естественной освещенности кео, который представляет собой отношение освещенности на горизонтальной поверхности внутри помещения к одновременной горизонтальной освещенности снаружи, где Ев — горизонтальная освещенность внутри помещения в лк; Ен — горизонтальная освещенность снаружи в лк. При боковом освещении нормируется минимальное значение коэффициента естественной освещенности — кео мин, а при верхнем и комбинированном освещении — среднее его значение — кео ср. Способ расчета коэффициента естественной освещенности приведен в Санитарных нормах проектирования промышленных предприятий. С целью создания наиболее благоприятных условий труда установлены нормы естественной освещенности.

В тех случаях когда естественная освещенность недостаточна, рабочие поверхности должны дополнительно освещаться искусственным светом. Смешанное освещение допускается при условии дополнительного освещения только рабочих поверхностей при общем естественном освещении. Строительными нормами и правилами (СНиП 23-05-95) коэффициенты естественной освещенности производственных помещений установлены в зависимости от характера работы по степени точности (табл. 1). Для поддержания необходимой освещенности помещений нормами предусматривается обязательная очистка окон и световых фонарей от 3 раз в год до 4 раз в месяц.

Кроме того, следует систематически очищать стены, оборудование и окрашивать их в светлые цвета. Таблица 1 - Коэффициенты естественной освещенности для производственных помещений Характеристика зрительной работы по степени точности Наименьший размер объекта различения в мм Разряд зрительной работы Значение коэффициента в % при естественном освещении верхнем и комбинированном боковом Наивысшей точности Менее 0,15 I 10 3,5 Очень высокой точности От 0,15 до 0,3 II 7 2,5 Высокой точности От 0,3 до 0,5 III 5 2,0 Средней точности От 0,5 до 1,0 IV 4 1,5 Малой точности От 1,0 до 5,0 V 3 1,0 Грубая Более 5,0 VI 2 0,5 Работа с самосветящимися материалами и изделиями в горячих цехах VII 3 1,0 Общее наблюдение за ходом производственного процесса: постоянное наблюдение VIII 1 0,3 периодическое наблюдение за состоянием оборудования VIII 0,7 0,2 Работа на механизированных складах IX 0,5 0,1 Нормы естественного освещения промышленных зданий, сведенные к нормированию К.Е.О представлены в СНиП 23-05-95. Для облегчения нормирования освещенности рабочих мест все зрительные работы по степени точности делятся на восемь разрядов.

СНиП 23-05-95 устанавливают требуемую величину К.Е. О. в зависимости от точности работ, вида освещения и географического расположения производства.

Территория России делится на пять световых поясов, для которых значения К.Е.О. определяются по формуле: где N - номер группы административно-территориального района по обеспеченности естественным светом; - значение коэффициента естественной освещенности, выбираемое по СНиП 23-05-95 в зависимости от характеристики зрительных работ в данном помещении и системы естественного освещения. - коэффициент светового климата, который находится по таблицам СНиП в зависимости от вида световых проемов, их ориентации по сторонам горизонта и номера группы административного района.

Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении — в различных точках помещения с последующим усреднением; при боковом — на наименее освещенных рабочих местах. Одновременно измеряют наружную освещенность и определенный расчетным путем К.Е.О. сравнивают с нормативным. 5.

Преимущества и недостатки искусствен.освещения

Освещение прокатных цехов. Искусственное освещение

Искусственное освещение в зависимости от расположения источника света подразделяют на общее, местное и комбинированное. Общее освещение может быть равномерным и локализованным. При равномерном освещении светильники освещают рабочие места и все помещение в целом. Оно применяется при симметрично размещенном оборудовании. Равномерное освещение достигается симметричным размещением светильников одинакового типа и электроламп одинаковой мощности, подвешенных по всему цеху на одной высоте и расстоянии.

Локализованное общее освещение характеризуется несимметричным расположением светильников, т. е. светильники размещают в определенных местах, над оборудованием, где создается повышенная освещенность.

Общее освещение применяют для освещения пролетов цехов. Местное освещение применяют в качестве дополнительного при выполнении точных работ, на пультах управления, на станках, при работах, связанных с ремонтом оборудования и нагревательных устройств. Следует избегать применения только местного освещения.
Каждая из этих двух систем искусственного освещения имеет свои преимущества и недостатки.

Преимуществом общего освещения является равномерное распределение яркости по всему помещению и наименьшие затраты на устройство. Недостаток этого освещения заключается в отдаленности освещения от рабочих мест и невозможности обеспечить необходимый уровень освещенности рабочих поверхностей и управления световым потоком. Система местного освещения позволяет управлять световым потоком. Система комбинированного освещения получила наиболее широкое распространение и устраняет указанные недостатки.

Правильное сочетание местного и общего освещения обеспечивает безопасность работ и повышает производительность труда. При устройстве комбинированного освещения освещенность на рабочей поверхности от светильника общего освещения должна составлять не менее 10% от норм освещенности при комбинированном освещении.
В осветительных установках прокатных цехов применяют лампы накаливания и газоразрядные лампы.

Электротехнической промышленностью изготовляются лампы накаливания общего назначения (по ГОСТ 2239—60) мощностью от 15 до 1500 вт на номинальное напряжение 127 и 220 в. Для местного освещения выпускаются лампы накаливания на номинальное напряжение 12 и 36 в мощностью до 50 вт. Из газоразрядных источников света в осветительных установках прокатных цехов применяют люминесцентные лампы и ртутные лампы высокого давления с исправленной цветностью типа ДРЛ.

В настоящее время выпускаются пять типов люминесцентных ламп различной цветности — лампы дневного света (ЛД), холодного белого света (ЛХБ), белого света (ЛБ), теплого белого света (ЛТБ) и лампы с исправленной цветоотдачей (ЛДЦ). Мощность выпускаемых люминесцентных ламп от 8 до 80 вт.

Режим горения люминесцентных ламп зависит от температуры окружающего воздуха. Наиболее благоприятные условия создаются при температуре окружающего воздуха 18—25°С. Как повышение, так и понижение температуры вне этих пределов вызывает уменьшение светового потока лампы. Колебания напряжений в сети также вызывают изменение режима горения люминесцентных ламп.

Для снижения глубины колебаний светового потока используют следующие схемы включения:

  • включают соседние лампы (или светильники) в разные фазы трехфазной электрической сети;
  • применяют специальные двухламповые схемы с искусственным сдвигом фаз при помощи конденсатора, включенного в цепь одной из пары ламп.

Световая отдача ламп ДРЛ примерно такая Же, КШ у люминесцентных. Промышленность выпускает различные конструкции ламп ДРЛ (двух- и четырехэлектродные) мощностью от 250 до 1000 вт.

Для рационального распределения светового потока ламп искусственного освещения применяют осветительные приборы — сочетание лампы с осветительной арматурой. Осветительные приборы делятся на группы близкого действия — светильники и дальнего действия — прожекторы. Назначение осветительной арматуры состоит в том, чтобы перераспределить световой поток ламп, защитить глаз от яркости нитей ламп накаливания, защитить лампы от механических повреждений и загрязнения, а также создать условия безопасного обслуживания светильников.

В прожекторе световой поток источников света, излучаемый почти во всех направлениях, перераспределяется и концентрируется при помощи оптической системы в направленный пучок света. Защита глаз от прямого излучения нитей накаливания достигается созданием защитного угла светильника, величина которого определяется размещением лампы в арматуре светильника и высотой подвеса светильника.

Так как яркость источников света, применяемых для искусственного освещения, значительно превосходит допустимые величины, для защиты глаз людей, находящихся в помещении, каждый светильник характеризуется определенной величиной защитного угла. Защитным называется угол между горизонталью, на которой лежит световой центр светильника и прямой, проходящей через край рассеивателя или отражателя и центр тела накала лампы. Световым центром является геометрический центр светящегося тела лампы светильника, которая имеет заданное распределение силы света.

Во взрыво- и пожароопасных помещениях светильники должны исключать возможность возникновения взрывов от искрения в патроне или вследствие короткого замыкания в проводах, вводимых в патрон. В зависимости от распределения светового потока в пространстве светильники распределяются на следующие группы, % излучения светового потока:

Светильники прямого света - 90% в нижнюю полусферу

Светильники преимущественно прямого света - 60-90% в нижнюю полусферу

Светильники рассеянного света - 40-60% в каждую полусферу

Светильники преимущественно отраженного света - 60-90% в верхнюю полусферу

Светильники отраженного света - Не менее 90% в верхнюю полусферу

Светильники прямого света используют в помещениях с темными, плохо отражающими свет потолками и стенами, например в прокатных цехах с металлическими фермами, световыми фонарями и большими окнами.

Светильники преимущественно прямого света устанавливают в цехах со стенами и потолками, хорошо отражающими свет. Эти светильники дают довольно мяггие тени.
Светильники рассеянного типа применяют в тех. случаях, когда требуется осветить не только нижнюю, но и верхнюю часть помещения, где расположено оборудование и приборы, требующие наблюдения.

Светильники преимущественно отраженного и светильники отраженного света необходимы в случаях, когда нежелательны даже незначительные тени. Светильники этого типа наименее экономичны. Наиболее экономичными являются светильники прямого света, а затем преимущественно прямого света. Светильники рассеянного света экономичней, чем светильники отраженного света.

Светильники общего освещения с люминесцентными лампами должны иметь защитный угол в производственных помещениях не менее 15 град. Светильники местного освещения с любыми лампами должны иметь отражатели, сделанные из непросвечивающего или из густого светорассеивающего материала, с защитным углом не менее 30 град., а при расположении светильников не выше уровня глаз работающего — не менее 10 град.
Лестницы освещаются таким образом, чтобы светящиеся части любых ламп не были видны под углом до 10 град, вверх и вниз к горизонту.

В производственных помещениях прокатных цехов применяют светильники следующих типов:

1) «универсаль» и типа «люцетта цельная» — преимущественно прямого света открытого типа;

2) светильники типа «шар»— рассеянного света;

3) глубокоизлучатель эмалированный;

4) светильники специального назначения серии РН и ВЗГ рудничного типа, которые имеют колпаки из матированного стекла и применяются для освещения сырых, особо сырых, пыльных и пожароопасных помещений, а также помещений, в которых возможно образование взрывоопасной среды.

Световой поток люминесцентных ламп незначителен, поэтому светильники для них выполняют многоламповыми. Для защиты глаз от слепящего эффекта эти светильники снабжают рассеивающими заменителями из матированного стекла или специальными решетками, помещенными в нижней части светильника и выполненными в виде ячеек из тонкой листовой стали или органического стекла.

Люминесцентные светильники по характеру светораспределения бывают прямого света (для общего распределения прокатных цехов и др.) и преимущественно отраженного света (для общего освещения чистых помещений). Для освещения технологических пролетов прокатных цехов применяют ртутные лампы с исправленной цветностью типа ДРЛ. Для освещения машинных залов применяют люминесцентные лампы типа ЛБ в эмалированных светильниках.

Управление освещением цеховых помещений, имеющих естественный свет, централизовано и производится из машинного зала. Высота светового центра (высота подвеса) над уровнем пола светильников общего пользования в целях ограничения ослепительности принимается не менее величин, указанных в табл. 8.

Светильники местного освещения устраивают на шарнирных кронштейнах, чтобы рабочий при желании мог изменить направление светового потока. Во избежание электротравм для питания местных светильников рекомендуется использовать ток пониженного напряжения (12 в) и лампы небольшой мощности (25 вт).

Для освещенности помещения немаловажное значение имеет отражающая способность потолка, стен и оборудования. Применяя правильно выбранную окраску потолка, стен и оборудования, можно значительно улучшить условия работы глаза.

Потолки окрашивают таким образом, чтобы иметь максимальную отражающую способность не ниже 70%; стены должны иметь отражающую способность порядка 50-60%, а это достигается окраской их в светло-серый, бледно-зеленый, зелено-сероватый и бледно-голубой цвета; механизмы, оборудование следует окрашивать краской с отражающей способностью о г 25 до 40%.

Рекомендуем почитать

Наверх