Общие формулы горения органических веществ. Продукт горения: классификация, виды, описание. Сущность процесса горения

Налоги и отчетность 24.12.2023
Налоги и отчетность
  • Опыт 3. Обнаружение углерода и водорода в органических соединениях (видео)
  • Опыт 4. Обнаружение галогена в органическом веществе (проба Ф.Ф. Бейльштейна)
  • Ход опыта

    В сухую пробирку с газоотводной трубкой помещают парафин в виде стружки (до 0,3 г) и 1- 2 г оксида меди (II). Содержимое пробирки тщательно перемешивают, засыпают сверху слоем (1 г) оксида меди (II). В верхнюю часть пробирки помещают комочек ваты, на которую насыпают немного б/в сульфата меди (II). Пробирку закрывают пробкой с газоотводной трубкой и закрепляют ее в штативе с небольшим наклоном в сторону пробирки. Свободный конец газоотводной трубки опускают в пробирку с известковой водой, чтобы трубка почти касалась поверхности жидкости (позднее можно опустить ее непосредственно в жидкость).

    Сначала прогревают всю пробирку, затем сильно нагревают ту часть, где находится реакционная смесь, и постепенно продвигают спиртовку к отверстию для вытеснения газов.

    На удаленных от реакционной смеси стенках пробирки наблюдают появление капелек жидкости, а в сульфате меди (II) образуются синие участки. Выделяющийся газ вызывает помутнение известковой воды. Наблюдения и ответы на вопросы после опыта запишите в рабочую тетрадь.

    Вопросы и задания:

    1. Чем обусловлен синий цвет кусочков сульфата меди (II)?
    2. Что является причиной помутнения известковой воды, а при стоянии – появления осадка?
    3. Опишите происходящие изменения с помощью уравнений реакций.

    Опыт 4. Обнаружение галогена в органическом веществе

    Опыт 4. Обнаружение галогена в органическом веществе (проба Ф.Ф. Бейльштейна, 1872 г.)

    Проба Ф.Ф. Бейльштейна используется в органической химии для доказательства наличия в составе молекулы галогена. При сгорании вещества на медной проволочке пламя спиртовки окрашивается в зеленый цвет за счет образования летучих при высоких температурах галогенидов меди (кроме фторидов).

    Оборудование и реактивы: спиртовка, спички; органическое вещество, содержащее гало­ген (четыреххлористый углерод, кусочки полихлор­ви­ни­ла), медная проволочка, закрученная в спираль на одном конце и вдетая в корковую пробку (держатель) – на другом.

    Ход опыта

    Внесите в пламя спиртовки медную проволочку с петлей на конце и прогрейте ее до красного каления. Убедитесь, что при прокаливании проволочки пламя спиртовки не окрашивается.

    После охлаждения почерневшей проволочки опустите на мгновение ее петлю в исследуемую жидкость и внесите смоченную в жидкости проволочку в нижнюю часть пламени, затем перенесите ее в самую горячую верхнюю часть пламени спиртовки. Наблюдайте за изменением окраски пламени.

    Если исследуемое вещество твердое, опустите в него на мгновение конец раскаленной проволочки, а затем внесите проволочку с веществом в пламя спиртовки. Наблюдения и ответы на вопросы после опыта запишите в рабочую тетрадь.

    Вопросы и задания:

    1. Почему происходит почернение проволочки на воздухе?
    2. Как изменяется цвет пламени спиртовки при внесении медной проволочки со следами бромэтана, хлороформа, ПВХ, фторопласта?
    3. Можно ли отличить хлорид натрия от органического вещества, содержащего галоген?


    Рекомендуется прокаливание кристаллического сульфата меди (II) выполнить непосредственно перед использованием. В фарфоровую чашку насыпают сульфат меди (II) и прокаливают в пламени спиртовки, периодически перемешивая содержимое и не допуская перекаливания. При изменении окраски прокаливание прекращают. Сравнивают окраску сульфата до и после прокаливания.

    Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.

    Является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.

    Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процес­са горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.

    Различие между медленной экзотермической окислительно-вос­становительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к по­вышению температуры в зоне реакции на сотни и даже тысячи гра­дусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит – аэрозоля полного или неполного сгорания ве­ществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое пре­вращение) также не входят в понятие горения.

    Необходимым условием для возникновения горения является на­личие горючего вещества, окислителя (при пожаре его роль выпол­няет кислород воздуха) и источника зажигания. Для непосредственно­го возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давле­нию и др. После возникновения горения в качестве источника зажи­гания выступает уже само пламя или зона реакции.

    Например, метан способен окисляться кислородом с выделением тепла до метилового спирта и муравьиной кислоты при 500-700 К. Однако, чтобы реакция продолжилась, необходимо пополнение теп­лоты за счет внешнего подогрева. Горением это не является. При на­гревании реакционной смеси до температуры выше 1000 К скорость окисления метана возрастает настолько, что выделяющегося тепла становится достаточно для дальнейшего продолжения реакции, необ­ходимость в подводе теплоты извне исчезает, начинается горение. Та­ким образом, реакция горения, возникнув, способна сама себя поддер­живать. Это главная отличительная особенность процесса горения. Другая, связанная с ней особенность - способность пламени, являю­щегося зоной химической реакции, самопроизвольно распростра­няться по горючей среде или горючему материалу со скоростью, оп­ределяемой природой и составом реакционной смеси, а также услови­ями процесса. Это основной механизм развития пожара.

    Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.

    Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горю­чих веществ под воздействием источника зажигания происходит об­разование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окисли­теля) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном от­ношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максималь­ное количество теплоты.

    Рис. 1. Формы диффузионных пламен

    а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки

    По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые - горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горю­чего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.

    Так, для картона и хлопка самопотухание наступает уже при 14 об. % кис­лорода, а полиэфирной ваты - при 16 об. %. В процессе горения, как и в других химических процессах, обяза­тельны два этапа: создание молекулярного контакта между реаген­тами и само взаимодействие молекул горючего с окислителем с об­разованием продуктов реакции. Если скорость превращения исход­ных реагентов определяется диффузионными процессами, т.е. ско­ростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с зако­нами диффузии Фика), то такой режим горения называется диффу­зионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгора­ния. Если же скорость горения зависит только от скорости химиче­ской реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие ско­рости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окисли­теля. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют го­могенным, при нахождении горючего и окислителя в зоне реакции в разных фазах - гетерогенным. Гомогенным является горение не только газов, но и , а также большинства твердых . Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложе­ния. Наличие пламени является отличительным признаком гомоген­ного горения.

    Примерами гетерогенного горения служат горение углерода, уг­листых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными про­дуктами горения могут быть не только оксиды, но и фториды, хлори­ды, нитриды, сульфиды, карбиды и др.

    Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламе­ни; температура пламени, его излучательная способность; тепловы­деление и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.

    Всем известно, что при горении образуется свечение которое сопровождает продукта горения.

    Рассмотрим две системы:

    • газообразная система
    • конденсированная система

    В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.

    Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.

    Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.

    Скорость распространения пламени принято разделять на:

    • дефлаграционное (нормальное), протекаю­щее с дозвуковыми скоростями (0,05-50 м/с)
    • детонационное, ког­да скорости достигают 500-3000 м/с.

    Рис. 2. Ламинарное диффузионное пламя

    В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинар­ные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массоообмена происходят путем мо­лекулярной диффузии и конвекции. В турбулентных пламенах про­цессы тепло-, массообмена осуществляются в основном за счет мак­роскопического вихревого движения. Пламя свечи - пример лами­нарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической не­устойчивостью, которая проявляется видимыми завихрениями дыма и пламени.

    Рис. 3. Переход ламинарного потока в турбулентный

    Очень наглядным примером перехода ламинарного потока в тур­булентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.

    При пожарах пламена имеют диффузионный турбулентный ха­рактер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулент­ном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.

    Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде

    В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.

    Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом в процессе горения. Состав их зависит от состава горящего вещества и условий его горения. В условиях пожара чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят главным образом углерод, водород, кислород и азот. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО 2 , Н 2 О, N 2 . При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

    Продукты сгорания называют влажными , если при расчете их состава учитывают содержание паров воды, и сухими , если содержание паров воды не входит в расчетные формулы.

    Реже во время пожара горят неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами сгорания их в большинстве случаев являются твердые вещества, например Р 2 О 5 , Na 2 O 2 , CaO, MgO. Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

    Дым представляет собой дисперсную систему, состоящую из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом. Диаметр частиц дыма колеблется от 1 до 0,01 мкм. Объем дыма, образующегося при горении единицы массы (кг)

    или объема (м 3) горючего вещества в теоретически необходимом объеме воздуха (L=1) приведен в табл. 1.2.

    Таблица 1.2

    Объем дыма при горении горючих веществ

    Наименование

    горючего вещества

    Объем дыма, м 3 /кг

    Наименование

    горючего газа

    Объем дыма, м 3 / м 3

    Ацетилен

    Древесина (сосна) (W = 20 %)

    Природный газ

    В составе дыма, образующегося на пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

    Состав продуктов термоокислительного разложения зависит от природы горючих веществ, температуры и условий контакта с окислителем. Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молекулах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, оксиды азота и другие соединения. Так, в дыме при горении капрона содержится цианистый водород, при горении линолеума «Релин» – сероводород, диоксид серы, при горении органического стекла – оксиды азота. Продукты неполного сгорания и термоокислительного разложения в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

    Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

    Горючее вещество – индивидуальное химическое соединение. В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле

    где - объем влажных продуктов сгорания, м 3 /кг; , , , — число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравне- нии реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

    Пример 1.2. Определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях. Составляем уравнение реакции горения ацетона в воздухе

    Определяем объем сухих продуктов сгорания ацетона

    Объем влажных продуктов сгорания 1 м 3 горючего вещества (газа) можно рассчитать по формуле

    , (1.10)

    где - объем влажных продуктов сгорания 1 м 3 горючего газа, м 3 /м 3 ; , , , — число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

    Горючее вещество – сложная смесь химических соединений. Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид

    С + О 2 + 3,76N 2 = СО 2 + 3,76N 2 .

    При сгорании 1 кг углерода получается 22,4/12 = 1,86 м 3 СО 2 и 22,4×3,76/12 =7,0 м 3 N 2 .

    Аналогично определяют объем (в м 3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

    Углерод ………..

    Водород ………..

    Сера ……………

    При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

    В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.


    Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 . В воздухе при 0 0 С и давлении 101 325 Па на 1 кг кислорода приходится 3,76×22,4/32=2,63 м 3 азота.

    На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

    Пример 1.3. Определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N , 2,5 % S , W = 3,8 %, A =11,0 %.

    Объем продуктов сгорания будет следующий, м 3 (табл. 1.3).

    Объем продуктов сгорания каменного угля

    Состав продуктов сгорания

    Углерод

    1,86 × 0,758 = 1,4

    Водород

    11,2 × 0,038 = 0,425

    Сера

    Азот в горючем веществе

    Влага в горючем веществе

    1,24 × 0,03 = 0,037

    Сумма

    Продолжение табл. 1.3

    Состав продуктов сгорания

    N 2

    Углерод

    7 × 0,758 = 5,306

    Водород

    21 × 0,038 = 0,798

    Сера

    2,63 × 0,025 = 0,658

    0,7 × 0,025 = 0,017

    Азот в горючем веществе

    0,8 × 0,011 = 0,0088

    Влага в горючем веществе

    Сумма

    6,7708 - 0,0736 = 6,6972

    Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м 3 . Итог табл. 1.3 указывает состав продуктов сгорания каменного угля. Объем влажных продуктов сгорания 1 кг каменного угля равен

    =1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м 3 /кг.

    Горючее вещество – смесь газов. Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

    СН 4 + 2О 2 + 2×3,76N 2 = СО 2 + 2Н 2 О + 7,52N 2 .

    Согласно этому уравнению, при сгорании 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота. Аналогично определяют объем (в м 3) продуктов сгорания 1 м 3 различных газов:

    Водород ……………….

    Окись углерода ……….

    Сероводород ………….

    Метан …………………

    Ацетилен ………………

    Этилен …………………

    На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

    Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14 – 16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

    В подвалах ………

    На чердаках …….

    Пример 1.4. Определить коэффициент избытка воздуха при пожаре в помещении, если во взятом на анализе дыме содержалось 19 % (об.) О 2 . Коэффициент избытка воздуха находим, пользуясь формулой (1.8).

    .

    После изучения вопроса о продуктах сгорания решите самостоятельную задачу.

    Задача 1.3. Определить объем влажных продуктов сгорания 1 м 3 доменного газа, состоящего из 10,5 % СО 2 , 28 % СО, 0,3 % СН 4 , 2,7 % Н 2 и 58,5 % N 2 .

    ______________________________________________________________________

    ______________________________________________________________________

    ______________________________________________________________________

    Ответ: V n.c = 1,604 м 3 /м 3 .

    Многим известно, что смерть во время пожара наступает чаще из-за отравления продуктами горения, нежели от термического воздействия. Но отравиться можно не только во время пожара, но и в повседневной жизни. Возникает вопрос о том, какие существуют виды продуктов горения и при каких условиях они образуются? Давайте попробуем в этом разобраться.

    Что такое горение и его продукт?

    Бесконечно можно смотреть на три вещи: как течет вода, как работают другие люди и, конечно, как горит огонь...

    Горение - это физико-химический процесс, основой которого является окислительно-восстановительная реакция. Сопровождается она, как правило, выбросом энергии в виде огня, тепла и света. В этом процессе принимают участие вещество или смесь веществ, которые горят, - восстановители, а также окислитель. Чаще всего эта роль принадлежит кислороду. Горение также можно назвать процессом окисления горящих веществ (важно помнить, что горение - подвид реакций окисления, а не наоборот).

    Продукты горения - это все то, что выделяется во время сжигания. Химики в таких случаях говорят: "Все, что находится в правой части уравнения реакции". Но это выражение неприменимо в нашем случае, так как, кроме окислительно-восстановительного процесса, происходят также и а некоторые вещества просто остаются неизменными. То есть продуктами горения являются дым, зола, копоть, выделяемые газы, в том числе и выхлопные. Но особым продуктом является, конечно, энергия, которая, как отмечено в прошлом абзаце, выбрасывается в виде тепла, света, огня.

    Вещества, выделяемые во время горения: оксиды углерода

    Существует два оксида углерода: CO 2 и CO. Первый носит название углекислый газ (углекислота, оксид углерода (IV)), так как представляет собой бесцветный газ, состоящий из углерода, полностью окисленного кислородом. То есть углерод в данном случае имеет максимальную степень окисления - четвертую (+4). Этот оксид является продуктом горения абсолютно всех органических веществ, если те во время горения находятся в избытке кислорода. Кроме того, углекислота выделяется живыми существами при дыхании. Сам по себе он не опасен, если его концентрация в воздухе не превышает 3 процентов.

    Оксид углерода (II) (окись углерода) - CO - это ядовитый газ, в молекуле которого углерод находится в степени окисления +2. Именно поэтому это соединение может "догорать", то есть продолжать реакцию с кислородом: СО+О 2 =СО 2 . Главной опасной особенностью этого оксида является его невероятно большая, по сравнению с кислородом, способность присоединяться к эритроцитам. Эритроциты - красные клетки крови, задачей которых является транспортировка кислорода от легких к тканям и наоборот, углекислого газа к легким. Поэтому главная опасность окиси в том, что она мешает переносу кислорода к различным органам тела человека, тем самым вызывая кислородное голодание. Именно СО чаще всего вызывает отравление продуктами горения при пожаре.

    Оба оксида углерода не имеют ни цвета, ни запаха.

    Вода

    Всем известная вода - Н 2 О - также выделяется во время горения. При температуре горения продукты выделяются в А вода как пар. Вода является продуктом горения газа метана - СН 4 . Вообще, вода и углекислота , опять все зависит от количества кислорода) в основном выделяются при полном сгорании всех органических веществ.

    Сернистый газ, сероводород

    Сернистый газ также является оксидом, но на этот раз серы - SO 2 . Он имеет большое количество названий: двуокись серы, диоксид серы, сернистый ангидрид, оксид серы (IV). Представляет собой этот продукт горения бесцветный газ, с резким запахом подожженной спички (он при ее возгорании и выделяется). Выделяется ангидрид при горении серы, серосодержащих органических и неорганических соединений, например, сероводорода (Н 2 S).

    При попадании на слизистую глаз, носа или рта человека двуокись легко реагирует с водой, образуя сернистую кислоту, которая легко разлагается обратно, но при этом успевает раздражать рецепторы, спровоцировать воспалительные процессы дыхательных путей: H 2 O+SO 2 ⇆H 2 SO 3 . Этим обусловлена токсичность продукта горения серы. Сернистый газ, так же как и угарный, может гореть - окисляться до SO 3 . Но происходит это при очень высокой температуре. Данное свойство используется при производстве серной кислоты на заводе, так как SO 3 реагирует с водой, образует H 2 SO 4 .

    А вот сероводород выделяется при термическом разложении некоторых соединений. Этот газ также ядовит, имеет характерный запах тухлых яиц.

    Цианистый водород

    Тогда Гиммлер сжал челюсти, раскусил ампулу с цианистым калием и через несколько секунд умер.

    Цианистый калий - сильнейший яд - соль также известной как цианистый водород - HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа. Синильная кислота очень ядовита, даже небольшая - 0,01 процент - концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Аппетитно, не правда ли?

    Но синильной кислоте присуща одна "изюминка" - отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только противогазом не получится.

    Акролеин

    Пропеналь, акролеин, акрилальдегид - все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит. При попадании жидкости или ее паров на слизистые, особенно в глаза, вызывает сильное раздражение. Пропеналь является высокореакционным соединением, и это объясняет его высокую токсичность.

    Формальдегид

    Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. бесцветный газ с резким запахом.

    Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот - N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды - газы, имеют бурый цвет и чрезвычайно токсичны.

    Пепел, зола, копоть, сажа, уголь

    Копоть, или сажа - остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом.

    Зола, или пепел - мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения. При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу.

    А уголь - это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть.

    Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ. Перечислить их всех нереально, да и не нужно, потому что другие вещества выделяются в ничтожно малых количествах, и только при окислении определенных соединений.

    Прочие смеси: дым

    Звезды, лес, гитара... Что может быть романтичней? А не хватает одного из самых главных атрибутов - костра и струйки дыма над ним. А что такое дым?

    Дым - это некая смесь, которая состоит из газа и взвешенных в нем частиц. В роли газа выступают пары воды, угарный и углекислый газ и другие. А твердыми частицами являются пепел и просто не сгоревшие остатки.

    Выхлопные газы

    Большинство современных машин работает на двигателе внутреннего сгорания, то есть для движения используется энергия, получающаяся при сгорании топлива. Чаще всего это бензин и другие нефтепродукты. Но при выгорании в атмосферу выбрасывается большое количество отходов. Это и есть выхлопные газы. Они высвобождаются в атмосферу в виде дыма из выхлопных труб автомобиля.

    Большую часть от их объема занимает азот, а также вода, углекислота. Но также выбрасываются и токсичные соединения: угарный газ, оксиды азота, не сгоревшие углеводороды, а также сажа и бензпирен. Последние два являются канцерогенами, то есть повышают риск развития рака.

    Особенности продуктов полного окисления (в данном случае горения) веществ и смесей: бумага, сухая трава

    При сгорании бумаги выделяется в основном также углекислый газ и вода, а при недостатке кислорода - угарный газ. Кроме того, бумага в своем составе содержит склеивающие вещества, которые могут выделяться и концентрироваться, и смолы.

    Та же ситуация происходит и при сгорании сена, только без склеивающих веществ и смолы. В обоих случаях дым белый с желтым оттенком, со специфическим запахом.

    Древесина - дрова, доски

    Древесина состоит из органических веществ (в том числе серо- и азотсодержащих) и небольшого количества минеральных солей. Поэтому при ее полном сгорании выделяются углекислота, вода, азот и сернистый газ; образуется серый, а иногда черный дым со смолистым запахом, пепел.

    Сера и азотсодержащие вещества

    Про токсичность, продукты горения этих веществ мы уже говорили. Стоит отметить еще, что при горении серы выделяется дым с серовато-серым цветом и резким запахом сернистого газа (так как именно двуокись серы и выделяется); а при горении азотистых и других азотсодержащих веществ желто-бурый, с раздражающим запахом (но дым появляется не всегда).

    Металлы

    При горении металлов образуются оксиды, пероксиды или надпероксиды этих металлов. Кроме того, если металл содержал какие-то органические или неорганические примеси, то образуются продукты горения этих примесей.

    Но особенность горения имеет магний, так как горит он не только в кислороде, как другие металлы, но и в углекислом газе, образуя при этом углерод и оксид магния:2 Mg+CO 2 =C+2MgO. Дым образуется белый, без запаха.

    Фосфор

    При горении фосфора выделяется белый дым, пахнущий чесноком. При этом образуется оксид фосфора.

    Резина

    И, конечно, резина. Дым от горящей резины - черный, из-за большого количества сажи. Кроме того, выделяются продукты горения органических веществ и оксид серы, а благодаря ему дым приобретает сернистый запах. Также выделяются тяжелые металлы, фуран и другие токсичные соединения.

    Классификация отравляющих веществ

    Как вы, наверное, уже могли заметить, большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным разобрать и классификацию отравляющих веществ.

    В первую очередь, все отравляющие вещества - далее ОВ - делятся на смертельные, временно выводящие из строя и раздражающие. Первые делят на ОВ поражающие нервную систему (Ви-Икс), удушающие (угарный газ), кожно-нарывные (иприт) и обще-ядовитые (цианистый водород). К примерам временно выводящих из строя ОВ можно отнести Би-Зет, а раздражающим - адамсит.

    Объем

    Теперь поговорим про те вещи, про которые нельзя забывать, говоря о продуктах, выбрасываемых при сгорании.

    Объем продуктов горения - важная и очень полезная информация, которая, например, поможет определить уровень опасности сгорания того или иного вещества. То есть, зная объем продуктов, можно определить количество вредных соединений, входящих в состав выделившихся газов (как вы помните, большинство продуктов - газы).

    Чтобы рассчитать искомый объем, в первую очередь нужно знать, был ли избыток или недостаток окислителя. Если, допустим, кислород содержался в избытке, то вся работа сводится к тому, чтобы составить все уравнения реакции. Следует помнить, что топливо, в большинстве случаев, содержит примеси. После высчитывается по закону сохранения массы количество вещества всех продуктов горения и, учитывая температуру и давление, по формуле Менделеева-Клапейрона, находится сам объем. Конечно, для ничего не смыслящего в химии человека все выше перечисленное выглядит страшно, но на самом деле ничего трудного нет, надо только разобраться. Подробнее на этом останавливаться не стоит, так как статья не об этом. При недостатке кислорода увеличивается сложность расчета - меняются уравнения реакций и сами продукты горения. Кроме того, сейчас используются более сокращенные формулы, но для начала лучше считать представленным способом (если это требуется), чтобы понять смысл вычислений.

    Отравление

    Некоторые вещества, выбрасываемые в атмосферу при окислении горючего, токсичны. Отравление продуктами горения - вполне реальная угроза не только при пожаре, но и в автомобиле. Кроме того, вдыхание или другой способ попадания некоторых из них не приводит к мгновенному негативному результату, а напомнит об этом через некоторое время. К примеру, так ведут себя канцерогены.

    Естественно, каждому нужно знать правила, предотвращающие негативные последствия. В первую очередь, это правила противопожарной безопасности, то есть то, что каждому ребенку рассказывают с самого раннего детства. Но, почему-то, часто бывает, что и взрослые, и дети просто забывают их.

    Правила оказания первой помощи при отравлении многим тоже, скорее всего, знакомы. Но на всякий случай: самое главное, вынести отравившегося человека на свежий воздух, то есть отгородить от дальнейшего попадания токсинов в его организм. Но и нужно помнить, что существуют методы защиты от продуктов горения органов дыхания, поверхности тела. Это защитный костюм пожарных, противогазы, кислородные маски.

    Защита от токсичных продуктов горения очень важна.

    Использование в личных целях человека

    Тот момент, когда люди научились использовать огонь в своих целях, стал, несомненно, переломным в процессе развития всего человечества. К примеру, одни из самых главных его продуктов - тепло и свет - использовались (и используются до сих пор) человеком при приготовлении пищи, освещении и согревании в холодное время. Уголь в древности использовался как чертежный инструмент, а сейчас, например, как лекарство (активированный уголь). То, что оксид серы используется при приготовлении кислоты, также отмечалось, таким же образом используется и оксид фосфора.

    Вывод

    Стоит отметить, что все рассказанное здесь - лишь общие сведения, представленные для ознакомления с вопросами о продуктах горения.

    Хочется сказать, что соблюдение правил безопасности и разумное обращение как с самим процессом горения, так и с его продуктами, позволит использовать их с пользой.

    Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

    2) определение с.о. каждого атома углерода:

    В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+» у атома углерода, и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-» у атома углерода. При этом связи с соседними атомами углерода не учитывают.

    В качестве простейшего примера определим степень окисления углерода в молекуле метанола.

    Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « – »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем: -3 + 1 = -2.Таким образом, степень окисления углерода в метаноле равна -2.

    Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.

    Уточняем, в каких случаях лучше использовать тот или иной способ.

    Процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется.

    Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы.

    Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

    При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода.

    Например:

    Составим полное уравнение химической реакции методом баланса. Среднее значение степени окисления углерода в н-бутане:

    Степень окисления углерода в оксиде углерода(IV) равна +4.

    Составим схему электронного баланса:

    Обратите внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

    Т.е. переход от -2,5 до +4 соответствует переходу 2,5 + 4 = 6,5 единиц. Т.к. участвует 4 атома углерода, то 6,5 · 4 = 26 электронов будет отдано суммарно атомами углерода бутана.

    C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:

    Можно воспользоваться методом определения суммарного заряда атомов углерода в молекуле:

    (4C)-10 …… → (1C)+4 , учитывая, что количество атомов до знака = и после должно быть одинаково, уравниваем (4C)-10 …… →[(1C)+4] · 4

    Следовательно, переход от -10 до +16 связан с потерей 26 электронов. В остальных случаях определяем значения с.о. каждого атома углерода в соединении,обращая при этом внимание на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

    Вначале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

    Алкены

    Процессы окисления зависят от строения алкена и среды протекания реакции.

    1.При окислении алкенов концентрированным раствором перманганата калия KMnO4 в кислой среде (жесткое окисление) происходит разрыв σ- и π-связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

    а) Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

    б) Если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона , т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

    в) Если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

    Особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

    2.В нейтральной или слабощелочной средах окисление сопровождается образованием диолов (двухатомных спиртов) , причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

    В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены (реакция Вагнера).

    3. Окисление алкенов в присутствии солей палладия (Вакер-процесс) приводит к образованию альдегидов и кетонов:

    2CH2=CH2 + O2 PdCl2/H2O → 2 CH3-CO-H

    Гомологи окисляются по менее гидрированному атому углерода:

    СH3-CH2-CH=CH2 + 1/2O2 PdCl2/H2O → CH3- CH2-CO-CH3

    Алкины

    Окисление ацетилена и его гомологов протекает в зависимости от того, в какой среде протекает процесс.

    а) В кислой среде процесс окисления сопровождается образованием карбоновых кислот: Реакция используется для определения строения алкинов по продуктам окисления:

    В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

    Для ацетилена :

    1) В кислой среде:

    H-C≡C-H KMnO4, H2SO4→ HOOC-COOH (щавелевая кислота)

    3CH≡CH +8KMnO4 H2O→ 3KOOC-COOK оксалат калия +8MnO2↓+ 2KOH+ 2H2O Арены (бензол и его гомологи)

    При окисления аренов в кислой среде следует ожидать образования кислот, а в щелочной – солей.

    Гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по α -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

    а.5C6H5–CH3 + 6KMnO4 + 9H2SO4 = 5C6H5COOH + 6MnSO4 + 3K2SO4 + 14H2O, 5C6H5–б.C2H5 + 12KMnO4 + 18H2SO4 = 5C6H5COOH + 5CO2 + 12MnSO4 + 6K2SO4 + 28H2O, в.C6H5–CH3 + 2KMnO4 = C6H5COOK + 2MnO2 + KOH + H2O.

    Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

    1) В кислой среде:

    С6H5-CH2-R KMnO4, H2SO4→ С6H5-COOH бензойная кислота+ CO2

    2) В нейтральной или щелочной среде:

    С6H5-CH2-R KMnO4, H2O/(OH)→ С6H5-COOK + CO2

    3) Окисление гомологов бензола перманганатом калия или бихроматом калия при нагревании:

    С6H5-CH2-R KMnO4, H2SO4, t˚C→ С6H5-COOHбензойная кислота+ R-COOH

    4) Окисление кумола кислородом в присутствии катализатора (кумольный способ получения фенола):

    C6H5CH(CH3)2 (O2, H2SO) → C6H5-OH фенол + CH3-CO-CH3 ацетон

    5C6H5CH(CH3)2 + 18KMnO4 + 27H2SO4 → 5C6H5COOH + 42H2O + 18MnSO4 + 10CO2 + K2SO4

    C6H5CH(CH3)2 + 6H2O – 18ē → C6H5COOH + 2CO2 + 18H+ | x 5

    MnO4- + 8H+ + 5ē → Mn+2 + 4H2O | x 18

    Следует обратить внимание на то, что при мягком окислении стирола перманганатом калия КMnO4 в нейтральной или слабощелочной среде происходит разрыв π -связи,образуется гликоль (двухатомный спирт). В результате реакции окрашенный раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV).

    Рекомендуем почитать

    Наверх