Производственный микроклимат. Микроклимат помещений: гост. микроклимат производственных помещений Микроклимат помещений характеризуется следующим показателем

Бланки документов 17.09.2019

Микроклимат производственных помещений - это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а так - же интенсивностью теплового излучения.

Неблагоприятное сочетание параметров микроклимата может вызвать перенапряжение механизмов терморегуляции, перегрев и переохлаждение организма.

Факторы, влияющие на микроклимат, можно разделить на две группы:

Нерегулируемые (комплекс климатообразующих факторов данной местности)

Регулируемые (особенности и качество строительства зданий, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и т.д.)

Санитарными нормами установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические нормы характеризуются сочетанием таких параметров микроклимата, которые обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции, создают ощущение теплового комфорта и предпосылки высокой работоспособности.

Допустимые микроклиматические нормы характеризуются сочетанием величин параметров микроклимата, которые могут вызвать изменение теплового состояния организма, сопровождающееся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений и нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности. Допустимые нормы устанавливают в тех производственных помещениях, в которых по технологическим, техническим и экономическим причинам невозможно оптимальные нормы.

К параметрам микроклимата производственного помещения относится: температура воздуха (20-25 0 С), скорость движения воздуха (0,2-0,3 м/с), относительная влажность (40-60 %) барометрическое давление (760 мм.рт.ст) и тепловое излучение от нагретых поверхностей.

Температура воздуха. Высокая температура воздуха вызывает быструю утомляемость организма, расслабление тела, снижение внимания, приводит к перегреву организма. В холодное время при выполнении, например сварочных, кузовных работ вне помещения или в неотапливаемом помещении возможно воздействие низких температур, что может вызвать охлаждение организма, стать причиной простудных заболеваний, возможны случаи отморожения частей тела (пальцы рук, ног, щеки, уши).

Влажность воздуха оценивается содержанием в нем водяных паров. Повышенная влажность воздуха приводит к нарушению терморегуляции организма, к его перегреванию при высокой температуре. Низкая относительная влажность воздуха приводит к ускорению отдачи тепла, высыханию слизистых оболочек верхних дыхательных путей.


Движение воздуха. Человек начинает ощущать движение воздуха при скорости 0,1 м/с. легкое движение воздуха при обычных температурах способствует хорошему самочувствию. Большая скорость движения воздуха, особенно при низких температурах, приводит к сквознякам и простудным заболеваниям (радикулиты, миозиты и т.д.).

Тепловое излучение (лучистая энергия) выделяется в пространство вследствие сильного нагрева различного оборудования. Источниками лучистой энергии являются: нагревательные печи, кузнечные горны, термические и закалочные ванны, сварочные работы. Потоки тепловых излучений состоят из инфракрасных лучей. В результате проникновения лучистой энергии повышается температура кожи и глубоко лежащих тканей на облучаемом участке, нарушается работа сердца, понижает давление. При сварочных работах воздействуют инфракрасные лучи длиной 0,7-1,5 мкм (лучи Фохта), которые вызывают катаракту глаз.

Для нормализации температурно-влажностного режима применяют:

Системы вентиляции, отопления и кондиционирования воздуха. При правильном выборе их типа, производительности и оптимальной конструкции условия труда на рабочих местах поддерживаются в пределах норм с минимальными затратами средств, труда и энергии;

Механизация и автоматизация производственных процессов, использование более совершенных машин и оборудования позволяет снизить время пребывания людей на рабочих местах с некомфортными параметрами микроклимата, а также ограничить или исключить контакт с вредными производственными факторами;

Теплоизолируют нагревательные поверхности оборудования и устанавливают защитные экраны, чтобы предотвратить избытки теплоты в помещениях;

Организация рационального питьевого режима с целью компенсации потерь организмом влаги и солей, обеспечивая работающих в горячих цехах подсоленной и охлажденной газированной водой;

Использование СИЗ, если значение параметров микроклимата отличается от нормативных. С их помощью можно предотвратить перегрев или переохлаждение организма, а также устранить неблагоприятное воздействие тепловых излучений на органы зрения;

Рациональное чередование периодов труда и отдыха для профилактики отрицательного влияния дискомфортных условий труда.

При низких температурах, особенно в сочетании с высокой подвижностью воздуха, вводят дополнительные перерывы для обогрева работающих. Температуру в помещениях для обогрева поддерживают в пределах 22-24 0 С, что несколько выше значений, предусмотренных для санитарно-бытовых помещений. При выполнении работы в условиях высоких температур продолжительностью дополнительных перерывов должна быть достаточна для восстановления работоспособности и процессов терморегуляции

Вентиляция и виды

Для приведения параметров микроклимата к нормируемым используют воздухообмен, который осуществляется по средствам вентиляции.

Вентиляция - это процесс частичной или полной замены загрязненного воздуха помещений свежим (или чистым) наружным воздухом.

Вентиляция позволяет снизить избыточное количество теплоты, газов, паров, пыли.

Процесс поддержания температуры, влажности и чистоты воздуха в соответствии с санитарно-гигиеническими требованиями, предъявляемыми к производственным помещениямназывается кондиционированием. Одно из основных требований к системе кондиционирования воздуха - регулирование определенных соотношений между четырьмя переменными величинами: температурой воздуха; средневзвешенным значением температуры внутренних поверхностей ограждений (стены, пол, потолок); влажностью воздуха; средней скоростью и равномерностью движения воздуха внутри помещения. Кроме того, системой кондиционирования воздуха должна регулироваться концентрация газов, паров и пыли в помещении. Если система предназначена для создания комфортных условий людям, то она должна также уменьшать запахи, выделяемые человеческим телом.

Для поддержания нормируемой температуры воздуха в производственных помещениях в холодное время года и одновременно регулировать влажность воздуха предназначено отоплению , которое бывает местное и центральное (по радиусу действия).

К системам отопления предъявляют следующие санитарно-гигиенические требования: равномерный прогрев воздуха помещений; возможность регулирования количества выделяемой теплоты и совмещения процессов отопления и вентиляции; отсутствие загрязнения воздуха помещений вредными выделениями и неприятными запахами; пожаро- и взрывобезопасность; удобство в эксплуатации и ремонте.

Устройство вентиляции и отопления, что имеет большое значение для оздоровления воздушной среды в производственных помещениях.

Применение средств индивидуальной защиты.

Вентиляция как средство защиты воздушной среды производственных помещений

Задачей вентиляции является обеспечение чистоты воздуха и заданных метеорологических условий в производственных помещениях. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха.

По способу перемещения воздуха вентиляция бывает с естественным побуждением (естественной) и с механическим (механической). Возможно также сочетание естественной и механической вентиляции (смешанная вентиляция).

Вентиляция бывает приточной, вытяжной или приточно-вытяжной в зависимости от того, для чего служит система вентиляции , - для подачи (притока) или удаления воздуха из помещения или (и) для того и другого одновременно.

По месту действия вентиляция бывает общеобменной и местной.

Действие общеобменной вентиляции основано на разбавлении загрязненного, нагретого, влажного воздуха помещения свежим воздухом до предельно допустимых норм. Эту систему вентиляции наиболее часто применяют в случаях, когда вредные вещества, теплота, влага выделяются равномерно по всему помещению. При такой вентиляции обеспечивается поддержание необходимых параметров воздушной Среды во всем объеме помещения.

Воздухообмен в помещении можно значительно сократить, если улавливать вредные вещества в местах их выделения. С этой целью технологическое оборудование, являющееся источником выделения вредных веществ, снабжают специальными устройствами, от которых производится отсос загрязненного воздуха. Такая вентиляция называется местной вытяжкой.

Местная вентиляция по сравнению с общеобменной требует значительно меньших затрат на устройство и эксплуатацию.

В производственных помещениях, в которых возможно внезапное поступление в воздух рабочей зоны больших количеств вредных паров и газов, наряду с рабочей предусматривается устройство аварийной вентиляции.

На производстве часто устраивают комбинированные системы вентиляции (общеобменную с местной, общеобменную с аварийной и т.п.).

Для эффективной работы системы вентиляции важно, чтобы еще на стадии проектирования были выполнены следующие технические и санитарно-гигиенические требования.

1. Количество приточного воздуха должно соответствовать количеству удаляемого (вытяжки); разница между ними должна быть минимальной.

В ряде случаев необходимо так организовать воздухообмен, чтобы одно количество воздуха обязательно было больше другого. Например, при проектировании вентиляции двух смежных помещений, в одном из которых выделяются вредные вещества. Количество удаляемого воздуха из этого помещения должно быть больше количества приточного воздуха, в результате чего в помещении создается небольшое разрежение.

Возможны такие схемы воздухообмена, когда во всем помещении поддерживается избыточное по отношению к атмосферному давление. Например, в цехах электровакуумного производства, для которого особенно важно отсутствие пыли.

2. Приточные и вытяжные системы в помещении должны быть правильно размещены. Свежий воздух необходимо подавать в те части помещения, где количество вредных веществ минимально, а удалять, где выделения максимальны.

Приток воздуха должен производиться, как правило, в рабочую зону, а вытяжка - из верхней зоны помещения.

3. Система вентиляции не должна вызывать переохлаждения или перегрева работающих.

4. Система вентиляции не должна создавать шум на рабочих местах, превышающий предельно допустимые уровни.

5. Система вентиляции должна быть электро-, пожаро- и взрывобезопасна, проста по устройству, надежна в эксплуатации и эффективна.

Естественная вентиляция

Воздухообмен при естественной вентиляции происходит вследствие разности температур воздуха в помещении и наружного воздуха, а также в результате действия ветра.

Естественная вентиляция может быть неорганизованной и организованной.

При неорганизованной вентиляции поступление и удаление воздуха происходит через неплотности и поры наружных ограждений (инфильтрация), через окна, форточки, специальные проемы (проветривание).

Организованная естественная вентиляция осуществляется аэрацией и дефлекторами, и поддается регулировке.

Аэрация. Осуществляется в холодных цехах за счет ветрового давления, а в горячих цехах за счет совместного и раздельного действия гравитационного и ветрового давлений. В летнее время свежий воздух поступает в помещение через нижние проемы, расположенные на небольшой высоте от пола (1-1,5 м), а удаляется через проемы в фонаре здания.

Поступление наружного воздуха в зимнее время осуществляется через проемы, расположенные на высоте 4-7 м от пола. Высота принимается с таким расчетом, чтобы холодный наружный воздух, опускаясь до рабочей зоны, успел достаточно нагреться за счет перемешивания с теплым воздухом помещения. Меняя положение створок, можно регулировать воздухообмен.

При обдувании зданий ветром с наветренной стороны создается повышенное давление воздуха, а на заветренной стороне - разрежение.

Под напором воздуха с наветренной стороны наружный воздух будет поступать через нижние проемы и, распространяясь в нижней части здания, вытеснять более нагретый и загрязненный воздух через проемы в фонаре здания наружу. Таким образом, действие ветра усиливает воздухообмен, происходящий за счет гравитационного давления.

Преимуществом аэрации является то, что большие объемы воздуха подаются и удаляются без применения вентиляторов и воздуховодов. Система аэрации значительно дешевле механических систем вентиляции.

Недостатки: в летнее время эффективность аэрации снижается вследствие повышения температуры наружного воздуха; поступающий в помещение воздух не обрабатывается (не очищается, не охлаждается).

Вентиляция с помощью дефлекторов. Дефлекторы представляют собой специальные насадки, устанавливаемые на вытяжных воздуховодах и использующие энергию ветра. Дефлекторы применяют для удаления загрязненного или перегретого воздуха из помещений сравнительно небольшого объема, а также для местной вентиляции, например, для вытяжки горячих газов от кузнечных горнов, печей и т.д.

В настоящее время наибольшее распространение получил дефлектор ЦАГИ (рис.12).

Рис. 12. Дефлектор ЦАГИ.

1 - диффузор, 2 - цилиндрическая обечайка, 3 - колпак, 4 - конус, 5 - патрубок

Ветер, обдувая обечайку дефлектора, создает разрежение на большей части его окружности, вследствие чего воздух из помещения движется по воздуховоду и патрубку 5 и затем выходит наружу через две кольцевые щели между обечайкой 2 и краями колпака 3 и конуса 4. Эффективность работы дефлекторов зависит главным образом от скорости ветра, а также высоты установки их над коньком крыши.

Механическая вентиляция

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях эжекторами.

Производственное освещение

Основные светотехнические понятия и единицы

Освещение производственных помещений характеризуется количественными и качественными показателями. К основным количественным показателям относятся: световой поток, сила света, яркость и освещенность.

К основным качественным показателям зрительных условий работы можно отнести: фон, контраст между объектом и фоном, видимость.

Световой поток (Ф) - это мощность светового видимого излучения, которая оценивается глазом человека по световым ощущениям. Единицей светового потока является люмен (лм) световой поток от эталонного точечного источника в одну канделу (международную свечу), расположенного в вершине телесного угла в один стерадиан.

Сила света (1) - это величина, которая определяется отношением светового потока (Ф) к телесному углу (w), в пределах которого световой поток равномерно распределяется:

За единицу силы света принята кандела (кд) - сила света точечного источника, излучающего световой поток в 1лм, который равномерно распределяется внутри телесного угла в 1 стерадиан.

Яркость (В) - определяется как отношение силы света, излучаемого элементом поверхности в данном направлении, к площади светящейся поверхности:

где 1 - сила света, излучаемая поверхностью в заданном направлении.

S - площадь поверхности;

А - угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

Единицей яркости является н и m (нт) - яркость светящейся поверхности, от которой в перпендикулярном направлении излучается свет силой в 1 канделу с 1м 2 .

Освещенность (Е) - отношение светового потока (Ф), падающего на элемент поверхности, к площади этого элемента (S):

Е = Ф/S (2.13)

Ф - световой поток, лм

S - площадь, м 2

За единицу освещенности принят л ю к с (лк) - уровень освещенности поверхности площадью 1 м 2 , на которую падает равномерно распределяясь, световой поток в 1 люмен.

Фон - поверхность, прилегающая непосредственно к объекту различия, на которой он рассматривается. Фон характеризуется коэффициентом отражения поверхности ρ, представляющим собой отношение светового потока, отраженного от поверхности, к световому потоку, падающему на неё. Фон считается светлым при ρ > 0,4, средним - при ρ = 0,2 - 0,4 и темным, если ρ < 0,2.

Контраст между объектом и фоном (k) характеризуется соотношением яркостей рассматриваемого объекта (точка, линия, знак и другие элементы, которые требуется различить в процессе работы) и фона. Контраст между объектом и фоном определяется по формуле:

где В о и В ф соответственно яркости объекта и фона, нт.

Контраст считается большим при к >0,5, средним - при к = 0,2 - 0,5 и малым - при к < 0,2.

Видимость (v) характеризует способность глаза воспринимать объект. Видимость зависит от освещенности, размера объекта различия, его яркости, контраста между объектом и фоном, длительности экспозиции: V = (2.15)

где к - контраст между объектом и фоном;

к пор - пороговый контраст, то есть наименьший контраст, различимый глазом при данных условиях.

Для измерения светотехнических величин применяют люксметры, фотометры, измерители видимости и другие приборы.

В производственных условиях для контроля освещенности рабочих мест и общей освещенности помещений чаще всего используют люксметры типов Ю 116, Ю 117 и универсальный портативный цифровой люксметр-яркомер ТЭС 0693. Работа этих приборов основана на явлении фотоэффекта - превращении световой энергии в электрическую.

Для создания благоприятных условий зрительной работы, исключающих быстрое утомление глаз, возникновение профессиональных заболеваний, несчастных случаев содействующих повышению производительности труда и качества продукции, производственное освещение должно отвечать следующим требованиям:

Создавать на рабочей поверхности освещенность, соответствующую характеру зрительной работы, не ниже установленных норм;

Обеспечить достаточную равномерность и постоянства уровня освещенности в производственных помещениях во избежание частой переадаптации органов зрения;

Не создавать ослепляющего действия как от самих источников освещения, так и от других предметов, находящихся в поле зрения;

Не создавать на рабочей поверхности резких и глубоких теней (особенно подвижных);

Обеспечить достаточный для различия деталей контраст освещаемых поверхностей;

Не создавать опасных и вредных производственных факторов (шум, тепловые излучения, опасность поражения током, пожаро и взрывоопасность светильников);

Должно быть надежным и простым в эксплуатации, экономичным и эстетичным.

В зависимости от источника света производственное освещение может быть естественным, создаваемым прямыми солнечными лучами и рассеянным светом небосвода; искусственным, создаваемым электрическими источниками света и совмещенным, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Естественное освещение подразделяется на: боковое (одно или двухстороннее), которое осуществляется через световые проёмы (окна) в наружных стенах; верхнее, осуществляемое через фонари и световые проемы в крышах и перекрытиях; комбинированное - сочетание верхнего и бокового освещения.

Искусственное освещение может быть общим и комбинированным.

Общим называют освещение, при котором светильники размещаются в верхней зоне помещения (не ниже 2,5 м над полом) равномерно (общее равномерное освещение) или с учетом расположения рабочих мест (общее локализованное освещение). Комбинированное освещение состоит из общего и местного. Его целесообразно применять при работах высокой точности, а также, если необходимо создать определенное или переменное, в процессе работы, направление света. Местное освещение создается светильниками, которые концентрируют световой поток непосредственно на рабочих местах. Применение только местного освещения не допускается, учитывая опасность производственного травматизма и профессиональных заболеваний.

Принцип естественного освещения

ПРИНЦИП НОРМИРОВАНИЯ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ. Естественное освещение используется для общего освещения производственных и подсобных помещений.

Оно создается лучистой энергией солнца и на организм человека действует наиболее благоприятно. Используя этот вид освещения, следует учитывать метеорологические условия и их изменения в течение суток и периодов года в данной местности.

Это необходимо для того, чтобы знать, какое количество естественного света будет попадать в помещение через устраиваемые световые проемы здания: окна — при боковом освещении, световые фонари верхних перекрытий здания — при верхнем освещении. При комбинированном естественном освещении к верхнему освещению добавляется боковое. Помещения с постоянным пребыванием людей должны иметь естественное освещение.

Установленные расчетом размеры световых проемов допускается изменять на +5, -10%. Неравномерность естественного освещения помещений производственных и общественных зданий с верхним или верхним и естественным боковым освещением и основных помещений для детей и подростков при боковом освещении не должна превышать 3:1. Солнцезащитные устройства в общественных и жилых зданиях следует предусматривать в соответствии с главами СНиП по проектированию этих зданий, а также с главами по строительной теплотехнике.

Качество освещения естественным светом характеризуется коэффициентом естественной освещенности кео, который представляет собой отношение освещенности на горизонтальной поверхности внутри помещения к одновременной горизонтальной освещенности снаружи, где Ев — горизонтальная освещенность внутри помещения в лк; Ен — горизонтальная освещенность снаружи в лк. При боковом освещении нормируется минимальное значение коэффициента естественной освещенности — кео мин, а при верхнем и комбинированном освещении — среднее его значение — кео ср. Способ расчета коэффициента естественной освещенности приведен в Санитарных нормах проектирования промышленных предприятий. С целью создания наиболее благоприятных условий труда установлены нормы естественной освещенности.

В тех случаях когда естественная освещенность недостаточна, рабочие поверхности должны дополнительно освещаться искусственным светом. Смешанное освещение допускается при условии дополнительного освещения только рабочих поверхностей при общем естественном освещении. Строительными нормами и правилами (СНиП 23-05-95) коэффициенты естественной освещенности производственных помещений установлены в зависимости от характера работы по степени точности (табл. 1). Для поддержания необходимой освещенности помещений нормами предусматривается обязательная очистка окон и световых фонарей от 3 раз в год до 4 раз в месяц.

Кроме того, следует систематически очищать стены, оборудование и окрашивать их в светлые цвета. Таблица 1 - Коэффициенты естественной освещенности для производственных помещений Характеристика зрительной работы по степени точности Наименьший размер объекта различения в мм Разряд зрительной работы Значение коэффициента в % при естественном освещении верхнем и комбинированном боковом Наивысшей точности Менее 0,15 I 10 3,5 Очень высокой точности От 0,15 до 0,3 II 7 2,5 Высокой точности От 0,3 до 0,5 III 5 2,0 Средней точности От 0,5 до 1,0 IV 4 1,5 Малой точности От 1,0 до 5,0 V 3 1,0 Грубая Более 5,0 VI 2 0,5 Работа с самосветящимися материалами и изделиями в горячих цехах VII 3 1,0 Общее наблюдение за ходом производственного процесса: постоянное наблюдение VIII 1 0,3 периодическое наблюдение за состоянием оборудования VIII 0,7 0,2 Работа на механизированных складах IX 0,5 0,1 Нормы естественного освещения промышленных зданий, сведенные к нормированию К.Е.О представлены в СНиП 23-05-95. Для облегчения нормирования освещенности рабочих мест все зрительные работы по степени точности делятся на восемь разрядов.

СНиП 23-05-95 устанавливают требуемую величину К.Е. О. в зависимости от точности работ, вида освещения и географического расположения производства.

Территория России делится на пять световых поясов, для которых значения К.Е.О. определяются по формуле: где N - номер группы административно-территориального района по обеспеченности естественным светом; - значение коэффициента естественной освещенности, выбираемое по СНиП 23-05-95 в зависимости от характеристики зрительных работ в данном помещении и системы естественного освещения. - коэффициент светового климата, который находится по таблицам СНиП в зависимости от вида световых проемов, их ориентации по сторонам горизонта и номера группы административного района.

Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении — в различных точках помещения с последующим усреднением; при боковом — на наименее освещенных рабочих местах. Одновременно измеряют наружную освещенность и определенный расчетным путем К.Е.О. сравнивают с нормативным. 5.

Преимущества и недостатки искусствен.освещения

Освещение прокатных цехов. Искусственное освещение

Искусственное освещение в зависимости от расположения источника света подразделяют на общее, местное и комбинированное. Общее освещение может быть равномерным и локализованным. При равномерном освещении светильники освещают рабочие места и все помещение в целом. Оно применяется при симметрично размещенном оборудовании. Равномерное освещение достигается симметричным размещением светильников одинакового типа и электроламп одинаковой мощности, подвешенных по всему цеху на одной высоте и расстоянии.

Локализованное общее освещение характеризуется несимметричным расположением светильников, т. е. светильники размещают в определенных местах, над оборудованием, где создается повышенная освещенность.

Общее освещение применяют для освещения пролетов цехов. Местное освещение применяют в качестве дополнительного при выполнении точных работ, на пультах управления, на станках, при работах, связанных с ремонтом оборудования и нагревательных устройств. Следует избегать применения только местного освещения.
Каждая из этих двух систем искусственного освещения имеет свои преимущества и недостатки.

Преимуществом общего освещения является равномерное распределение яркости по всему помещению и наименьшие затраты на устройство. Недостаток этого освещения заключается в отдаленности освещения от рабочих мест и невозможности обеспечить необходимый уровень освещенности рабочих поверхностей и управления световым потоком. Система местного освещения позволяет управлять световым потоком. Система комбинированного освещения получила наиболее широкое распространение и устраняет указанные недостатки.

Правильное сочетание местного и общего освещения обеспечивает безопасность работ и повышает производительность труда. При устройстве комбинированного освещения освещенность на рабочей поверхности от светильника общего освещения должна составлять не менее 10% от норм освещенности при комбинированном освещении.
В осветительных установках прокатных цехов применяют лампы накаливания и газоразрядные лампы.

Электротехнической промышленностью изготовляются лампы накаливания общего назначения (по ГОСТ 2239—60) мощностью от 15 до 1500 вт на номинальное напряжение 127 и 220 в. Для местного освещения выпускаются лампы накаливания на номинальное напряжение 12 и 36 в мощностью до 50 вт. Из газоразрядных источников света в осветительных установках прокатных цехов применяют люминесцентные лампы и ртутные лампы высокого давления с исправленной цветностью типа ДРЛ.

В настоящее время выпускаются пять типов люминесцентных ламп различной цветности — лампы дневного света (ЛД), холодного белого света (ЛХБ), белого света (ЛБ), теплого белого света (ЛТБ) и лампы с исправленной цветоотдачей (ЛДЦ). Мощность выпускаемых люминесцентных ламп от 8 до 80 вт.

Режим горения люминесцентных ламп зависит от температуры окружающего воздуха. Наиболее благоприятные условия создаются при температуре окружающего воздуха 18—25°С. Как повышение, так и понижение температуры вне этих пределов вызывает уменьшение светового потока лампы. Колебания напряжений в сети также вызывают изменение режима горения люминесцентных ламп.

Для снижения глубины колебаний светового потока используют следующие схемы включения:

  • включают соседние лампы (или светильники) в разные фазы трехфазной электрической сети;
  • применяют специальные двухламповые схемы с искусственным сдвигом фаз при помощи конденсатора, включенного в цепь одной из пары ламп.

Световая отдача ламп ДРЛ примерно такая Же, КШ у люминесцентных. Промышленность выпускает различные конструкции ламп ДРЛ (двух- и четырехэлектродные) мощностью от 250 до 1000 вт.

Для рационального распределения светового потока ламп искусственного освещения применяют осветительные приборы — сочетание лампы с осветительной арматурой. Осветительные приборы делятся на группы близкого действия — светильники и дальнего действия — прожекторы. Назначение осветительной арматуры состоит в том, чтобы перераспределить световой поток ламп, защитить глаз от яркости нитей ламп накаливания, защитить лампы от механических повреждений и загрязнения, а также создать условия безопасного обслуживания светильников.

В прожекторе световой поток источников света, излучаемый почти во всех направлениях, перераспределяется и концентрируется при помощи оптической системы в направленный пучок света. Защита глаз от прямого излучения нитей накаливания достигается созданием защитного угла светильника, величина которого определяется размещением лампы в арматуре светильника и высотой подвеса светильника.

Так как яркость источников света, применяемых для искусственного освещения, значительно превосходит допустимые величины, для защиты глаз людей, находящихся в помещении, каждый светильник характеризуется определенной величиной защитного угла. Защитным называется угол между горизонталью, на которой лежит световой центр светильника и прямой, проходящей через край рассеивателя или отражателя и центр тела накала лампы. Световым центром является геометрический центр светящегося тела лампы светильника, которая имеет заданное распределение силы света.

Во взрыво- и пожароопасных помещениях светильники должны исключать возможность возникновения взрывов от искрения в патроне или вследствие короткого замыкания в проводах, вводимых в патрон. В зависимости от распределения светового потока в пространстве светильники распределяются на следующие группы, % излучения светового потока:

Светильники прямого света - 90% в нижнюю полусферу

Светильники преимущественно прямого света - 60-90% в нижнюю полусферу

Светильники рассеянного света - 40-60% в каждую полусферу

Светильники преимущественно отраженного света - 60-90% в верхнюю полусферу

Светильники отраженного света - Не менее 90% в верхнюю полусферу

Светильники прямого света используют в помещениях с темными, плохо отражающими свет потолками и стенами, например в прокатных цехах с металлическими фермами, световыми фонарями и большими окнами.

Светильники преимущественно прямого света устанавливают в цехах со стенами и потолками, хорошо отражающими свет. Эти светильники дают довольно мяггие тени.
Светильники рассеянного типа применяют в тех. случаях, когда требуется осветить не только нижнюю, но и верхнюю часть помещения, где расположено оборудование и приборы, требующие наблюдения.

Светильники преимущественно отраженного и светильники отраженного света необходимы в случаях, когда нежелательны даже незначительные тени. Светильники этого типа наименее экономичны. Наиболее экономичными являются светильники прямого света, а затем преимущественно прямого света. Светильники рассеянного света экономичней, чем светильники отраженного света.

Светильники общего освещения с люминесцентными лампами должны иметь защитный угол в производственных помещениях не менее 15 град. Светильники местного освещения с любыми лампами должны иметь отражатели, сделанные из непросвечивающего или из густого светорассеивающего материала, с защитным углом не менее 30 град., а при расположении светильников не выше уровня глаз работающего — не менее 10 град.
Лестницы освещаются таким образом, чтобы светящиеся части любых ламп не были видны под углом до 10 град, вверх и вниз к горизонту.

В производственных помещениях прокатных цехов применяют светильники следующих типов:

1) «универсаль» и типа «люцетта цельная» — преимущественно прямого света открытого типа;

2) светильники типа «шар»— рассеянного света;

3) глубокоизлучатель эмалированный;

4) светильники специального назначения серии РН и ВЗГ рудничного типа, которые имеют колпаки из матированного стекла и применяются для освещения сырых, особо сырых, пыльных и пожароопасных помещений, а также помещений, в которых возможно образование взрывоопасной среды.

Световой поток люминесцентных ламп незначителен, поэтому светильники для них выполняют многоламповыми. Для защиты глаз от слепящего эффекта эти светильники снабжают рассеивающими заменителями из матированного стекла или специальными решетками, помещенными в нижней части светильника и выполненными в виде ячеек из тонкой листовой стали или органического стекла.

Люминесцентные светильники по характеру светораспределения бывают прямого света (для общего распределения прокатных цехов и др.) и преимущественно отраженного света (для общего освещения чистых помещений). Для освещения технологических пролетов прокатных цехов применяют ртутные лампы с исправленной цветностью типа ДРЛ. Для освещения машинных залов применяют люминесцентные лампы типа ЛБ в эмалированных светильниках.

Управление освещением цеховых помещений, имеющих естественный свет, централизовано и производится из машинного зала. Высота светового центра (высота подвеса) над уровнем пола светильников общего пользования в целях ограничения ослепительности принимается не менее величин, указанных в табл. 8.

Светильники местного освещения устраивают на шарнирных кронштейнах, чтобы рабочий при желании мог изменить направление светового потока. Во избежание электротравм для питания местных светильников рекомендуется использовать ток пониженного напряжения (12 в) и лампы небольшой мощности (25 вт).

Для освещенности помещения немаловажное значение имеет отражающая способность потолка, стен и оборудования. Применяя правильно выбранную окраску потолка, стен и оборудования, можно значительно улучшить условия работы глаза.

Потолки окрашивают таким образом, чтобы иметь максимальную отражающую способность не ниже 70%; стены должны иметь отражающую способность порядка 50-60%, а это достигается окраской их в светло-серый, бледно-зеленый, зелено-сероватый и бледно-голубой цвета; механизмы, оборудование следует окрашивать краской с отражающей способностью о г 25 до 40%.

  • 4. Закон толерантности
  • Раздел II. Управление безопасностью жизнедеятельности
  • Тема 4. Управление безопасностью жизнедеятельности План
  • 1. Обеспечение безопасности жизнедеятельности
  • 2. Основные законодательные акты и нормативные документы
  • 3. Надзор и контроль за соблюдением законодательства о труде и о безопасности труда.
  • 3. Стандартизация в области безопасности труда
  • 4. Расследование и учет несчастных случаев
  • 5. Эффективность мероприятий по обеспечению безопасности на производстве
  • 7. Принципы построения и функционирования системы управления безопасностью труда
  • Тема 3. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс) и гражданской обороны (го) План
  • 1. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс)
  • 2. Гражданская оборона (го), её роль и место в Российской Федерации.
  • 2.2 Понятия го
  • 2.3 Организация и ведение го.
  • 3. Основы государственной политики в го. Принципы организации ведения го
  • 4. Степени готовности го и их краткая характеристика
  • Раздел III. Основы физиологии труда и комфортные условия жизни
  • Тема 4.Основы физиологии труда и комфортные условия жизни План
  • 1. Анализаторы человеческого организма.
  • 2. 1 Виды деятельности человека
  • 2.2 Физический и умственный труд
  • 2.3 Физиологические изменения в организме при работе
  • 3. Понятие микроклимата, его параметры.
  • 3.1 Общие требования к параметрам микроклимата
  • 3.2 Терморегуляция организма
  • 3.3 Методы и приборы измерения параметров микроклимата
  • Аспирационный психрометр
  • Дистанционный психрометр
  • Крыльчатый анемометр -
  • Термоанемометр по своей сути является акустическим прибором, то есть использует определение характеристик звука (а именно скорость звука), а затем эту информацию преобразует в нужный сигнал.
  • 5. Общие санитарно - технические требования к производственным помещениям и рабочим местам
  • 6. Приемы и способы создания комфортных условий для работы в производственных помещениях.
  • 7. Порядок организации оптимального освещения рабочих мест, способы определения качества естественного освещения и коэффициента освещенности
  • Раздел IV. Воздействие на человека вредных и опасных факторов среды обитания
  • 1.2 Повседневные абиотические факторы
  • 1.3 Литосферные опасности
  • 1.3.1 Землетрясение
  • 1.3.2 Сели
  • 1.3.3 Снежные лавины
  • 1.3.4 Извержение вулканов
  • 1.3.5 Оползни
  • 1.4 Гидросферные опасности
  • 1.4.1 Наводнения
  • 1.4.2 Цунами
  • 1.5 Атмосферные опасности
  • 1.6 Космические опасности
  • 1.2 Природные пожары
  • 1.2.1 Понятие «пожар» и «пожарная безопасность».
  • 1.2.2 Причины возникновения пожаров.
  • 1.2.3 Лесные пожары в России.
  • Лесные пожары - одна из серьезнейших проблем российских лесов.
  • 1.2.4 Приемы и средства ликвидации последствий лесных пожаров.
  • 1.3. Массовые заболевания. Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 3.1 Массовые заболевания
  • 1.3.2 Противоэпидемические и санитарно-гигиенические мероприятия в очаге бактериального заражения
  • 1.3.3 Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 2. Техногенные опасности.
  • 2.1 Вредные вещества.
  • 2.1.1 Показатели токсичности химических веществ
  • 4.1.2 Факторы, определяющие токсическое действие химических веществ
  • 2.1.3 Гигиеническое регламентирование химических факторов среды обитания
  • 2.1.4 Классификация промышленных ядов по характеру действия на организм человека
  • 2.1.5. Комбинированное действие промышленных ядов
  • 2.1.6 Пути поступления ядов в организм
  • 2.1.7. Распределение ядов в организме, превращение и выведение
  • 2.1.8. Оценка реальной опасности химических веществ
  • 2.1.9. Защита от воздействия вредных веществ
  • 2.2 Вибрация
  • 2.3 Акустический шум
  • 2.3.1 Акустические загрязнения
  • 2.4 Инфразвук
  • 2.4.1 Инфразвук в нашем повсевдневном окружении
  • 2.4.2 Технотронные методики
  • 2.4.3 Исследования медиков в области влияния на человека инфразвука.
  • 2.4.4 Некоторые меры борьбы с инфразвуком
  • 2.5 Электромагнитные поля и излучения
  • 2.5.1 Воздействие электромагнитных полей
  • 2.5.2 Воздействие электромагнитного излучения
  • 2.6 Лазерное излучение
  • 2.7 Электрический ток
  • 2.7.1 Условия существования электрического тока
  • 2.7.2 Основы электробезопасности
  • 2.8 Механическое воздействие
  • 2.8.1 Классификация и характеристика чрезвычайных ситуаций техногенного характера.
  • 3.Защита и действия населения
  • 3.1 Мероприятия по защите населения
  • 3.1.1 Оповещение
  • 3.1.2 Эвакуационные мероприятия
  • 3.1.3 Укрытие населения в защитных сооружениях
  • 3.2 Медицинские мероприятия по защите населения
  • Тема 8. Основы социальной, медицинской и пожарной безопасности План
  • 1. Виды социальных опасностей проживания человека в городских условиях
  • 2. Виды психического воздействия на человека и защита от них
  • 2.1 Защита от опасностей, связанных с физическим насилием
  • 2.1.1 Насилие над детьми
  • 2.1.2 Суицид
  • 2.1.3 Сексуальное насилие
  • 2.2 Психическое состояние человека, его безопасность.
  • 2.2.1 Определение психических состояний
  • 2.2.2 Типичные положительные психические состояния человека
  • 2.2.3 Отрицательные психические состояния
  • 2.2.4 Персеверация и ригидность
  • 2.2.5 Основы информационной безопасности
  • 2.2.4 Меры защиты: четыре уровня защиты
  • 2.3 Основы информационной безопасности
  • 2.3.1 Информационная безопасность
  • 2.3.2 Меры защиты информационной безопасности
  • 3. Оказание первой доврачебной помощи
  • 3.1. Оказание первой помощи
  • 3.1.2 Искусственное дыхание и непрямой массаж сердца
  • 3.1.3 Остановка кровотечения
  • 3.1.4 Наиболее распространенные виды травм, их симптомы и оказание первой помощи
  • 3.1.5 Оказание первой доврачебной помощи при переломах, вывихах, ушибах и растяжении связок
  • 3.1.5 Оказание первой доврачебной помощи при химических отравлениях
  • 3.1.6 Оказание первой доврачебной помощи при поражении электрическим током
  • 3.1.7 Учреждения, оказывающие первую медицинскую помощь
  • 4. Основы пожарной безопасности
  • 4.1 Основные нормативные документы, регламентирующие требования пожарной безопасности
  • 4.2 Организационные противопожарные мероприятия по обеспечению пожарной безопасности в зданиях и помещениях с массовым пребыванием людей
  • 4.3.Первичные средства пожаротушения
  • 4.3.1 Огнетушащие свойства воды
  • 4.3.2 К первичным средствам пожаротушения относятся:
  • 4.3.3 Огнетушители
  • 4.3.4 Оказание доврачебной помощи при пожаре
  • Раздел V. Безопасность населения и территорий в чрезвычайных ситуациях
  • 1. Транспортные аварии
  • 2.Внезапное обрушение сооружений и зданий
  • 2. Чрезвычайные ситуации природного характера
  • Природные пожары.
  • 3. Возможный характер будущей войны
  • 4. Понятие оружия массового поражения.
  • 4.1 Ядерное оружие
  • 4.2 Химическое оружие
  • 4.3 Бактериологическое (биологическое) оружие
  • 5. Основные способы защиты населения
  • 6. Основы организации аварийно-спасательных работ при ликвидации последствий чрезвычайных обстоятельств
  • Раздел VI. Экстремальные ситуации криминального характера
  • Тема 10. Основы безопасности жизнедеятельности в городских условиях План
  • 1. Общая классификация опасностей (признаки и виды).
  • 3. Естественные опасности
  • 4. Техногенные опасности
  • 5. Антропогенные опасности
  • 6. Система обеспечения безопасности
  • Тема 11. Основы личной безопасности от преступлений террористического характера План
  • Терроризм и его виды
  • 1.2. Формы терроризма
  • 1.2.1 Меры защиты при проведении террористических актов
  • 1.2.2 Угон воздушного судна и иное преступное вмешательство в деятельность гражданской авиации
  • 1.2.3 Захват и угон морского судна, и иное преступное вмешательство в деятельность международного судоходства
  • 1.2.4 Захват заложников
  • Необходимо усвоить следующие правила:
  • 1.2.5 Иные формы терроризма
  • 1.2.6 Причины терроризма
  • 2. Нападение на особо опасные объекты.
  • 2.1 Категория опасных объектов
  • 2.2 Обеспечение антитеррористической защищенности промышленных объектов и объектов инфраструктуры
  • 3. Понятие микроклимата, его параметры.

    Микроклимат производственных помещений - это микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда.

    Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы.

    3.1 Общие требования к параметрам микроклимата

    Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или до пустимого теплового состояния организма.

    Параметрами, характеризующими микроклимат в производственных помещениях, являются:

    Температура воздуха, t˚C

    Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), tп ˚C

    Относительная влажность воздуха, W %

    Скорость движения воздуха, V м/с

    Интенсивность теплового облучения, P Вт/м 2

    Абсолютная влажность А – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность F max – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров).

    Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах:

    Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%.

    На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение.

    Другим важным параметром является скорость движения воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды.

    Санитарно - гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения.

    Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства.

    3.2 Терморегуляция организма

    Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих большое влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, местного климата, сезона года, условий отопления (в холодный период года) и вентиляции в помещениях.

    Трудовая деятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Её количество зависит от степени физического напряжения в определённых климатических условиях и составляет от 85 Вт (в состоянии покоя) до 500 Вт (при тяжёлой работе). Для того, чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву, либо к переохлаждению организма и, как следствие, к потере работоспособности, быстрой утомляемости, потере сознания, к несчастным случаям и профзаболеваниям.

    Нормальное тепловое самочувствие имеет место, когда тепловыделения человека Qтч полностью воспринимаются окружающей средой Qтс, т.е. когда имеет место тепловом баланс Qтч = Qтс, то в этом случае температура внутренних органов остаётся постоянной 36, 5 ˚C.

    Если теплопродукция организма не может быть полностью передана окружающей среде (Qтч>Qтс), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко . Теплоизоляция человека (например, в тёплой и плотной одежде), находящегося в состоянии покоя (сидя или лёжа) от окружающей среды, приведёт к повышению его температуры уже через 1 час на 1,2˚C. А то же самое при выполнении работы средней тяжести, вызовет повышение температуры на 5 ˚C, т.е. приблизится к критической (+43˚C) температуре.

    В случае, когда окружающая среда воспринимает больше теплоты, чем её вырабатывает человек (Qтчхолодно .

    Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

    Теплоотдача идёт следующими путями:

    1 . Излучение тепла (Q изл) телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

    2. Проведение (Q п) - отдача тепла предметам, непосредственно соприкасающемся с телом человека.

    3. Конвекция (Q к) - передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

    4. Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей (Q ис.)- основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

    При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

    5. Тепловое (инфракрасное) излучение. В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

    В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

    Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

    Нормальный теплообмен (т.е. тепловой комфорт) образуется тогда, когда

    Q тч=Q к + Q т + Q изл + Q исп + Q в = Q тс

    При значительном превышении теплопродукции организма человека (Qтч»Qтс) возникает перегрев (гипертермия), угрожающая жизни и здоровью человека; при значительном уменьшении теплопродукции организма по сравнению с поглотительными возможностями среды, возникает переохлаждение (гипотермия), опасное для здоровья и жизни человека.

    В условиях теплового гомеостаза баланс тепла в организме гомойотермов описывается выражением:

    ΔQ = M - E ± C ± R ± K ± W = 0

    где ΔQ - изменения теплосодержания; М - продукция тепла, а остальные члены уравнения - отдача тепла организмом во внешнюю среду различными путями. В условиях температурного комфорта ΔQ = 0.

    Здесь сразу же необходимо оговорить то существенное современное понимание гомеостаза, в соответствии с которым любой его вид, в том числе и тепловой гомеостаз, выражается не в жесткой фиксации тех или иных показателей на определенном уровне, а скорее в их колебании вокруг среднего значения. Это принципиальное соображение, по крайней мере для человека, подтверждается еще и фактически - феноменом крайней нестабильности теплового обмена тела человека.

    О. Бартон и А. Эдхолм (1957) указывают, что даже при кратковременных исследованиях в специальных климатических камерах со строгим контролем метеорологических условий и состояния исследуемых термостабильное состояние не достигается на протяжении нескольких часов. Выражение 1 есть полное уравнение теплового баланса, но эволюционно - биологическое значение его составляющих далеко не одинаково. Так, продукция тепла в организме (М) генетически не обусловлена тепловым обменом, а является следствием коренных процессов, характеризующих жизнедеятельность. Живой организм характеризуется непрерывным обменом веществ и энергии, который происходит в соответствии с известным уравнением термодинамики:

    ΔН = ΔZ + TΔS

    где ΔН - изменение энтальпии - меры общего запаса химически превращаемой энергии; ΔZ - изменение термодинамического потенциала или свободной энергии - части энтальпии системы, которая может быть с пользой использована для совершения работы; ΔS - изменения энтропии (термодинамической) для данных условий - меры неопределенности системы, зависящей от действия межмолекулярных сил и теплового движения и измеряемой величиной рассеяния потенциальной энергии химических веществ в виде тепла; Т - °К (градусы Кельвина).

    Источником теплопродукции (М), таким образом, служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов энергия, кумулируемая в макроэргических соединениях, может рассеиваться в виде тепла ("первичная теплота"), либо превращаться в те или иные виды работы, в конечном счете также переходящие в тепловую энергию. Однако основное тепло организм получает в результате осуществления тех или иных видов работы (70% теплопродукции), в то время как теплорассеяние составляет лишь 30%.

    Таблица 3. 1. Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Орган

    Масса, кг

    Артериовенозная разница по кислороду, см 3

    Потребление кислорода

    абсолютное, см 3 /мин

    относительное

    см 3 /(мин·100 г)

    % от общего

    Скелетные мышцы

    Другие части тела

    Тело в целом

    Для проблемы регуляции теплового обмена существенный интерес представляют источники продукции тепла в покое и при мышечной работе. Образование тепла неразрывно связано с энергетическим обменом. В условиях нормальной жизнедятельности в покое о величине теплопродукции можно судить по интенсивности окислительных процессов (потреблению кислорода). Соответствующие данные приведены в табл. 3.1

    В покое наиболее высокий вклад в теплопродукцию (58,8%) обеспечивается печенью, мозгом и скелетными мышцами. При этом в первых двух органах высоки и относительные показатели энергетического обмена (артериовенозная разница по кислороду и его относительное потребление органом); в то же время интенсивность обмена в покоящихся мышцах невелика и валовое значение их теплопродукции определяется просто значительной массой мышечпой ткани.

    Структура энергозатрат в тканях (Иванов К. П., 1972) показывает, что из 1600 ккал/сут (в условиях основного обмена) около 900 ккал улавливается в форме макроэргических связей АТФ, 215 ккал идет на поддержание неравновесных ионных концентраций по обе стороны клеточных мембран, 415 ккал обеспечивает процессы обновления белков, липидов и полисахаридов, и лишь 270 ккал затрачивается на сокращение сердечной мышцы и дыхательных мышц. Вместе с тем все эти процессы характеризуются низкими величинами КПД, например синтез белка имеет КПД 10-13%, транспорт ионов - 20%, синтез АТФ - 50% и т. д. Таким образом, происходит накопление "первичного" и "вторичного" тепла.

    При совершении мышечной работы энергетический обмен в мышцах резко возрастает, о чем можно судить и по такому косвенному показателю, как величина минутного объема крови, протекающей через мышцы в покое и при их сокращении: в первом случае она равна 840 мл/мин, а во втором - 12 500 мл/мин, что указывает на повышение потребления кислорода мышцами по крайней мере в 5 раз. Таким образом, увеличение теплопродукции при мышечной работе обусловлено повышенным образованием тепла в первую очередь в ткани скелетных мышц. Однако следует учитывать еще и адекватное возрастание энергетических процессов (и теплопродукции) в органах, обеспечивающих мышечную работу - в головном и спинном мозге, сердце, дыхательных мышцах, в печени и других органах.

    В условиях термического комфорта важнейшее значение в термогенезе имеют произвольные мышечные движения, потому что именно к ним, как гениально заметил И. М. Сеченов (1863), сводится "все бесконечное разнообразие внешних проявлений мозговой деятельности". Измерения энерготрат при "обыденных" двигательных актах человека показывают их различную (иногда и значительную) термогенетическую стоимость (Кандрор И. С., 1968).

    В зависимости от поведения человека даже на протяжении нескольких часов сдвиги теплопродукции могут носить характер быстрых и значительных пиков.

    Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

    Изменение параметров микроклимата вызывает изменение соотношения величин теплопродукции Q. Так, при нормальных условиях во время лёгкой физической работы доля Qк+ Qтсоставляет около 30 % всей теплоотдачи, Qизл около 45 %, Qисп=20 % и Qв=5 %.

    Чем выше температура окружающих предметов, тем меньше теплоотдача излучением. При повышении температуры окружающего воздуха до температуры тела человека и выше, эффективность теплоотдачи теплопроводностью Qт, конвекциейQ ки излучением Qизл уменьшается и решающее значение приобретает отвод тепла путём испарения влаги (пота) с поверхности тела Qисп. Но интенсивность испарения влаги с поверхности тела человека зависит от относительной влажности Wи скорости движения окружающего воздухаV.

    При Wболее 75 % процесс испарения влаги резко замедляется, а при W=100 % прекращается полностью. Вместе с этим замедляется, а затем и прекращается теплоотдача Qисп. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» потоотделение, изнуряющее организм и не создаёт необходимую теплоотдачу. Происходит обезвоживание организма, которое влечёт за собой нарушение остроты зрения и умственной деятельности. Потеря влаги на 15-20% приводит к смертельному исходу.

    Недостаточная влажность (<20%) также оказывает неблагоприятное воздействие на организм, вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания, растрескивания и кровотечения.

    Увеличение скорости воздуха υ всегда приводит к увеличению теплоотдачи в окружающую среду.

    При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

    В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

    Согласно ДСН 3.3.6 042-99 «Санитарные нормы микроклимата производственных помещений», по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года (табл.3.2).

    Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда (табл. 3.2.).

    Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации (табл. 3.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности.

    Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека.

    Оптимальные условия микроклимата создаются для постоянных рабочих мест.

    Таблица 3. 2

    Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    Период года

    Температура воздуха, 0 С

    Относительная влажность, %

    Скорость движения, м/с

    Холодный период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Теплый период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Допустимые значения микроклиматических условий устанавливаются в случае, когда на рабочем месте не удается обеспечить оптимальные условия микроклимата согласно технологическим требованиям производства или экономической целесообразности.

    Перепад температуры воздуха по высоте рабочей зоны при обеспечении допустимых условий микроклимата не должна быть более 3-х градусов для всех категорий работ, а по горизонтали не должен выходить за пределы допустимых температур категорий работ.

    Внешняя среда, окружающая человека на производстве, влияет на организм человека, на его физиологические функции, психику, производительность труда.

    В условиях промышленного производства на человека нередко воздействуют низкая или высокая температура, сильное тепловое излучение, пыль, вредные химические вещества, шум, вибрация, электромагнитные волны, а также разнообразные сочетания этих факторов, которые могут привести к нарушению состояния здоровья, к снижению работоспособности.

    Производственный микроклимат характеризуется уровнем температуры и влажности воздуха, скоростью его движения, интенсивностью радиации преимущественно в инфракрасной и частично в ультрафиолетовой областях спектра электромагнитных излучений.

    Микроклимат можно классифицировать следующим образом:

    а) комфортный (сборочные цехи, операторские);

    б) с повышенной влажностью, при нормальной и низкой температуре воздуха (рыбообрабатывающие цехи), при высокой температуре воздуха (красильные цеха);

    в) переменный (при работе на открытом воздухе);

    г) нагревающий с преобладанием радиационного тепла (прокатные, литейные цеха) и с преобладанием конвекционного тепла (химические цехи и др.);

    д) охлаждающий с субнормальными температурами воздуха (от

    10º С до - 10º С – судостроительное производство) и с низкими температурами воздуха (ниже - 10º С – холодильные камеры).

    Показателями, характеризующими микроклимат в производственных помещениях, являются температура воздуха, температура поверхностей, относительная влажность воздуха, скорость движения воздуха, интенсивность теплового облучения.

    Постановлением Госкомсанэпиднадзора России от 01.10.1996 г. № 21 утверждены санитарные правила и норма (СанПиН 2.2.548-96) «Гигиенические требования к микроклимату производственных помещений», которые предназначены для предотвращения неблагоприятного воздействия микроклимата рабочих мест, производственных помещений на самочувствие, функциональное состояние, работоспособность и здоровье человека.

    Санитарные правила устанавливают гигиенические требования к показаниям микроклимата рабочих мест, производственных помещений с учётом интенсивности энергозатрат работающих, времени выполнения работы, периодов года и содержат требования к методам измерения и контроля микроклиматических условий.

    Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

    Производственный шум. Почти каждый производственный процесс сопровождается шумом. Шум, в зависимости от частоты звука, может вызвать повреждение слуха. Чем выше частота звука, тем сильнее его повреждающее действие.

    Борьба с производственным шумом является актуальной и в то же время сложной проблемой. Задача состоит в том, чтобы свести интенсивность шума к минимальной. В помещениях, где осуществляется умственный труд, уровень звука не должен превышать 50 дБ, в помещениях управления – 60 дБ, в помещениях, где находятся источники шума – 80-85 дБ. Кроме этого предусматриваются поправки на длительность действия и характер шума. Борясь с шумом, необходимо, прежде всего, устранить причины шумообразования, изменив, например, технологические процессы. Так, замена штамповки обработкой давлением, клепки котлов электросваркой позволила ликвидировать распространённую в прошлом профессиональную болезнь – глухоту котельщиков. В настоящее время разработано много приёмов, позволяющих конструировать станки, которые создают ничтожный шум при работе. Часто для уменьшения шума следует подтянуть болты, лучше отрегулировать станок или ликвидировать неисправности.


    Для снижения шума принимают меры, ведущие к поглощению шума. Цеха, в которых ведутся шумные работы, размещаются в отдельных зданиях или на периферии заводского здания – в пристройке. Стены таких цехов должны быть капитальными, из звукопоглощающих материалов. Если возможно, то источники шума помещают в звукоизолирующие кабины или облицовывают звукопоглощающим материалом, обычно деревом или асбестом.

    В качестве мер индивидуальной защиты применяют противошумы (антифоны). Внутренние противошумы – это тампоны из ваты, иногда пропитанные воском, а также специальные резиновые вкладыши, которые вставляют в наружный слуховой проход. Такие пртивошумы вызывают неприятные ощущения инородного тела в ухе и могут раздражать стенки слухового прохода. Более гигиеничны наружные противошумы, представляющие собой наушники из звукопоглощающих материалов (войлок, губчатая резина и др.), они снижают шум на 20-25 дБ. Использование противошумов даже в течение 2-3 ч за период рабочего дня является эффективным мероприятием по предупреждению вредного действия шума.

    Вибрация. Действию вибрации подвергаются лица многих профессий, обслуживающих вибрационные инструменты, пневматические или паровые молоты, штамповальные станки, транспортные средства, тракторы, комбайны, бульдозеры и др. Действие вибрации зависит от частоты и амплитуды колебательных движений, а также от ускорения. При игнорировании профилактических мер, вибрация вызывает функциональные и органические изменения в различных отделах нервной системы и ряд специфических нарушений, объединяемых в клиническую картину так называемой вибрационной болезни. Различают несколько форм вибрационной болезни: от воздействия локальной (например, на верхние конечности), общей и комбинированной вибрации.

    Воздействие преимущественно локальной вибрации, например, при работе с пневматическим инструментом, приводит к ангионеврозу, проявляющемуся в чувстве онемения, побледнения кожи на кистях рук и болях в пальцах – феномен «белых пальцев». При работе с отбойными молотками в основном поражаются опорно-двигательный и нервно-мышечный аппараты. Чаще поражаются опорно-двигательный аппарат кисти, локтевой и плечевой суставы. При рентгенографии обнаруживаются остеопороз и другие трофические расстройства. Наблюдаются расстройства со стороны центральной нервной (головные боли, раздражительность, головокружение, обморочные состояния и др.) и эндокринной систем.

    При действии общей вибрации наблюдаются преимущественно признаки поражения ЦНС. Вначале ощущается головная боль, быстрая утомляемость, общая слабость. Затем появляются так называемые вегетативные кризы: периодически наступающее состояние «дурноты» (слабость, тошнота, холодный пот), приступы боли в области головы, сердца, живота. Иногда отмечается неустойчивость психики – депрессия. При комбинированной форме вибрации наблюдается различное совмещение нарушений, характерных для двух ранее описанных форм. Нередко работающие подвергаются также сочетанному действию вибрации и шума.

    Профилактические мероприятия предусматривают:

    Устройство под машинами специальных массивных фундаментов, не связанных с фундаментом здания;

    Совершенствование машин и инструментов;

    Устройство пружинных мягких сидений на тракторах и других машинах;

    Конструирование вибробезопасных пневматических ручных инструментов;

    Ограничение длительности контакта человека с вибрационными инструментами. Так, санитарными правилами запрещается работа с виброинструментом более 2/3 длительности рабочего дня, предусматриваются 10 – 15-минутные перерывы после каждого часа работы, целесообразна организация комплексных бригад на основе взаимозаменяемости людей на работах, связанных с воздействием вибрации.

    В профилактике вибрационной болезни важную роль играет предупреждение переохлаждения.

    Из индивидуальных средств защиты при воздействии местной вибрации следует применять рукавицы с двойной ладонной прокладкой, предохраняющие руки от охлаждения, и специальную противовибрационную обувь. После окончания рабочего дня следует принимать тёплые (137º С) ванночки для рук с последующим самомассажем. Рекомендуют также веерный душ на область позвоночника. С целью повышения защитных сил организма назначают производственную гимнастику, профилактическое УФ-облучение (в зимнее время), дополнительный приём витаминов: 2 мг В 1 , 5 – 10 мг РР, 50 мг С.

    Проведение периодических медицинских осмотров

    Электромагнитные поля диапазона радиочастот. Действие электромагнитных полей широко используются в промышленности, медицине и в различных отраслях науки. Так, излучения сверхвысокой частоты (СВЧ) применяют для радиосвязи, радиолокации, на телевидении, в физиотерапии и для различных научных целей. Излучение ультравысокой частоты (УВЧ) также используется для радиосвязи и в физиотерапии, а высокой частоты (ВЧ) – для термической обработки металлов (закалка, напайка, плавка и др.), для нагрева диэлектриков в высокочастотном электрическом поле (сушка древесины, нагрев пластмасс и их сварка и др.), для нагрева диэлектриков в высокочастотном поле (сушка древесины, нагрев пластмасс и их сварка и др.).

    При длительном воздействии электромагнитных полей сверхпороговой напряжённости на человеческий организм наблюдаются функциональные расстройства со стороны центральной нервной и сердечно-сосудистой систем, в частности замедленный ритм сердечных сокращений, понижение артериального давления, нарушение обменных процессов.

    Предупреждение вредного действия полей электромагнитных излучений заключается в следующем.

    1) Все источники полей необходимо максимально экранировать металлическими кожухами или перегородками (сплошными или из мелкоячеистой сетки).

    2) Для защиты медицинского персонала физиотерапевтических кабинетов рекомендуется помещать ВЧ-аппараты в экранирующие кабинеты, использовать передвижные и стационарные экраны, а также дистанционное управление аппаратами, что часто применяют в промышленности.

    3) Для защиты от излучений могут также применяться костюмы из металлизированной ткани, шлемы из металлической сетки и специальные защитные очки (в виде полумаски) из мелкой латунной сетки или со стёклами с тончайшим покрытием из золота или диоксида олова.

    4) В рабочих помещениях следует систематически измерять напряжённость электромагнитного поля и предусматривать предотвращение попадания персонала в опасные зоны.

    5) путём соответствующей организации труда ограничивают время пребывания работающих в напряжённом электромагнитном поле.

    6) Проводят предварительные и периодические медицинские осмотры работающих.

    Производственная пыль. Одним из основных факторов, способствующих возникновению профессиональных заболеваний, является пыль. Это обусловлено образованием большого количества пыли при многих производственных процессах: размоле, шлифовке, сверлении, дроблении, просеивании, электросварке, при взрывных работах и транспортировке пылящихся материалов.

    Степень запыленности воздуха выражают в мг пыли на 1 м 3 воздуха. В чистом воздухе пыли содержится менее 0,1 мг/м 3 . С увеличением запыленности воздуха действие пыли на организм увеличивается.

    Размер пылинок влияет на продолжительность пребывания их во взвешенном состоянии и глубину проникновения в дыхательные пути. Крупные пылинки, имеющие диаметр свыше 10 мкм, быстро, в течение нескольких минут, выпадают из воздуха. Они задерживаются в верхних отделах дыхательных путей и оказывают вредное действие на слизистую оболочку. Обволакиваясь слизью, задержавшиеся пылинки удаляются из верхних дыхательных путей при чихании и кашле. Часть слизи заглатывается, и, если пыль ядовитая, она может проявить свои токсические действия, всосавшись через слизистую оболочку пищеварительного тракта. Альвеол лёгких крупные пылинки в основном не достигают. Пылинки размером менее 10 мкм могут длительное время находиться во взвешенном состоянии. Они проникают через дыхательные пути в лёгкие, вызывая пневмокониозы - заболевания, в основе которых лежит фиброз лёгкого и связанные с ним изменения.

    Наиболее опасным видом пневмокониоза является силикоз, который обусловлен вдыханием кварцевой пыли, содержащей свободный диоксид кремния (на рудниках, при шлифовке литья песком и др.), обладающий сильным фиброгенным действием.

    Силикатозы развиваются при вдыхании пыли силикатов, которые представляют собой простые или сложные соединения кремниевой кислоты с окислами металлов. К силикатам принадлежат пыль асбеста, талька, нефелина, стеклянного волокна, шлаковаты и др. Клиническая картина каждого силикатоза своеобразна; для диагностики решающее значение имеет рентгенография. Наиболее тяжёлым силикатозом является асбестоз, он часто (7 – 15%) сопровождается бронхогенным раком лёгких.

    Антракоз развивается медленно (15 – 20 лет) обычно у рабочих угольных шахт. Развитие процесса зависит от наличия примеси к углю кремнезема. Поэтому практически у рабочих шахт чаще может быть пневмокониоз смешанной формы, т.е. антракосиликоз.

    Считают, что основная причина возникновения пневмокониозов – длительное ингаляционное действие производственной пыли размером от 0,1 до 5 мкм (из них основную массу составляют пылинки размером 1 – 2 мкм). При дыхании через рот или при глубоком дыхании во время тяжёлой физической работы в лёгкие проникает больше пыли. Крупные твёрдые пылевые частицы диаметром более 10 мкм при наличии острых граней или зазубренных краев (стекло, кварц, железные спилки) могут травмировать слизистую оболочку верхних дыхательных путей сильнее, чем мягкие пылинки с гладкими, тупыми краями.

    Неспецифические заболевания, вызываемые производственной пылью, многообразны. Попадая в глаз, пыль оказывает раздражающее действие. К этому может присоединяться действие микроорганизмов, в результате чего возникают конъюнктивиты и кератиты. Фтористая, хромовая, известковая и некоторые другие виды пыли, обладающие раздражающим свойством, могут вызывать изъявления слизистой оболочки носа и носовые кровотечения. При длительном воздействии пыли на слизистые оболочки верхних дыхательных путей вначале развивается гипертрофический катар (ринит, трахеит, бронхит).

    Закупоривая протоки потовых и сальных желез, пыль нарушает потоотделение и может способствовать возникновению фолликулитов, угрей и других гнойничковых заболеваний кожи. Пыль, содержащая токсические вещества, вызывает отравления; пыль с примесью радионуклидов ведёт к лучевой болезни и раку лёгких; инфицированная пыль может быть причиной заболевания туберкулёзом, антиномикозом, сибирской язвой и др.

    Борьба с пылью и предупреждение «пылевой» патологии являются серьёзной задачей гигиены труда. По гигиеническим нормативам содержание пыли (неотоксической) в воздухе производственных помещений не должно превышать 10 мг/м 3 . Если в пыли до 10 % свободной кремниевой кислоты, то её ПДК составляет 4 мг/м 3 , если до 70 % - 2 мг/м 3 , если более 70 % - 1 мг/м 3 .

    Можно освободиться от пыли путём:

    Изменения технологии производства. Например, вместо шлифовки литья пескоструйным аппаратом в настоящее время на многих заводах и фабриках шлифовку осуществляют с помощью сильной струи воды и дроби;

    Замена сухих способов работы влажными (орошение отбитой руды, мокрое бурение, мокрая шлифовка изделий);

    Места пылеобразования максимально укрывают кожухами, соединёнными с воздуховодами вытяжной вентиляции.

    Большое количество пыли оседает на пол производственных помещений. Регулярной уборкой помещений влажным способом или пылесосами можно предупредить вторичное взвешивание пылевых частиц в воздухе помещений.

    Если перечисленные мероприятия не дают нужного эффекта или неприменимы на данном производстве, то приходится прибегать к мерам индивидуальной защиты. Для защиты глаз применяют противопылевые очки, для защиты дыхательных путей – ватно-марлевые повязки или противопылевые респираторы, в которых пыль задерживается на тканевом, бумажном или асбестовом фильтре, для защиты кожи – противопылевые комбинезоны.

    Спецодежду и нательное бельё необходимо часто стирать, особенно если пыль обладает раздражающим свойством. После работы следует мыться под душем.

    К профилактическим мероприятиям относятся ингаляция аэрозолями щелочных растворов по окончании рабочего дня и профилактическое УФ-облучение. Эти процедуры проводят в ингаляториях, устраиваемых при здравпунктах и фотариях, на производствах, где возможно вредное воздействие пыли на работающих, особенно кварцевой.

    Систематически осуществляются медицинские осмотры рабочих с рентгенографией и флюорографией лёгких для выявления ранних стадий заболеваний.

    Хронические заболевания органов дыхания являются основными противопоказаниями для приёма на работу, при которой возможно действие пыли на организм.

    Производственные яды и отравления. Опаснейшей профессиональной вредностью являются производственные яды – вещества, которые, проникая в организм в сравнительно небольших количествах, нарушают его нормальную жизнедеятельность и обуславливают различные болезненные состояния.

    Производственные отравления могут быть острыми и хроническими.

    Острыми отравления называют в том случае, когда они возникают после воздействия токсического вещества в течение короткого времени, не более одной рабочей смены.

    Хронические отравления возникают в результате длительного воздействия на организм малых количеств отравляющих веществ. Такие отравления развиваются постепенно. На ранних стадиях их трудно распознать, поскольку симптомы их малоспецифичны: недомогание, повышенная утомляемость, нарушение аппетита и сна, малокровие, ослабление сопротивляемости внешним воздействиям. Предупреждение даже самых слабых хронических отравлений является важнейшей задачей медицинских работников. Эта задача особо актуальна в настоящее время в связи с химизацией народного хозяйства и быта.

    Характер и степень выраженности изменений, вызываемых в организме действием производственных ядов, определяется многими факторами: химическими свойствами и строением вещества, концентрацией и физическим состоянием яда, путями проникновения его в организм, количеством яда, резорбированного организмом, продолжительностью действия. Имеет значение тяжесть выполняемых работ, поскольку от этого зависит количество вдыхаемого воздуха. Действие яда зависит также от физиологического состояния и защитных сил организма. Переутомление, нерациональное питание, дефицит ультрафиолетовых лучей, перегрев, алкоголизм усиливают интоксикацию. Растущий организм, беременная и кормящая женщина также более уязвимы.

    Производственные яды могут находиться в жидком, пылевидном, газообразном и парообразном состояниях. Газообразные и парообразные яды воздействуют на организм преимущественно через дыхательные пути. Это путь наиболее частый и опасный, поскольку дыхательные пути трудно защитить от загрязнённого токсическими веществами воздуха, а вследствие большой суммарной поверхности лёгочных альвеол создаются условия для быстрого всасывания яда в кровь. Некоторые газо- и парообразные яды могут оказывать и местное раздражающее действие на слизистые оболочки верхних дыхательных путей, конъюнктиву глаз и кожу, особенно в местах, влажных от пота.

    Пылевидные яды проникают в организм теми же путями, что и газообразные, но, кроме того, они могут поступать в организм через пищеварительный тракт при заглатывании носоглоточной слизи, а также при курении и приёме пищи немытыми руками.

    Жидкие яды влияют преимущественно на наружные покровы тела. Вещества, хорошо растворимые в жирах, способны проникать в кровь через неповреждённую кожу (бензол, нитробензол, бензин, тетраэтилсвинец). Некоторые жидкие яды образуют пары даже при комнатной температуре.

    Поступившие в организм яды подвергаются различным химическим превращениям, в результате чего многие полностью или частично обеззараживаются. Важную роль в обеззараживании ядов играет печень. Яды и продукты их превращения выделяются из организма человека через лёгкие, почки, желудочно-кишечный тракт и кожу. Если в организм поступает яда больше, чем выделяется и обезвреживается, то он накапливается в организме, что усиливает его действие.

    К распространённым промышленным ядам относятся оксид углерода (1), свинец, сернистый ангидрид, сероуглерод, оксиды азота, фторсодержащие соединения, ртуть (пары), соли мышьяка, соединения хрома, бензол, бензин, нитросоединения, тетраэтилсвинец, агрохимикаты и др.

    Для предупреждения производственных отравлений наиболее радикальной мерой является:

    Полное устранение яда из производства и замена его менее ядовитыми соединениями.

    На производствах, где невозможно исключить работу с вредными веществами, большое значение приобретает механизация, автоматизация и тщательная герметизация производственных процессов.

    Для удаления ядовитых газов и пыли непосредственно у мест их выделения используют местную вентиляцию (вытяжные шкафы, бортовые отсосы). В необходимых случаях местную вентиляцию дополняют общеобменной.

    Процессы, связанные с загрязнением среды ядовитыми веществами, проводят в изолированных помещениях, стены, полы и потолки которых обшивают материалами, не впитывающими ядовитые вещества и легко очищающимися от них.

    Из мер индивидуальной защиты в зависимости от свойств ядовитого вещества и путей воздействия его на организм применяют различные виды спецодежды, резиновые перчатки и сапоги, защитные очки, ватно-марлевые повязки, противопылевые респираторы, фильтрующие противогазы, изолирующие противогазы с кислородными приборами и скафандрами.

    Ознакомившись с технологией производства и выяснив, какие вещества могут воздействовать на работающих, медицинские работники обязаны обеспечить здравпункт предприятия и санитарные посты все необходимым для оказания первой помощи при случайных отравлениях. Лиц, по состоянию здоровья особо чувствительных к действию химических соединений, применяемых на данном производстве, к работе не допускают. Существует список производств, на которых не разрешается работать подросткам до 18 лет, беременным женщинам и кормящим матерям.

    Для своевременного выявления ранних стадий хронических отравлений и предупреждения их развития осуществляют периодические медицинские осмотры. Они зависят от токсических свойств производственных ядов, их проводят в основном каждые 6 или 12 месяцев, а при некоторых работах чаще. Выявление ранних стадий хронических отравлений очень сложно, поэтому к проведению медицинских осмотров в обязательном порядке привлекают в зависимости от характера действия яда врачей соответствующих специальностей. Для облегчения диагностики медицинские осмотры сопровождают необходимыми функциональными лабораторными исследованиями крови, мочи и др. На тех производствах, где воздух загрязнён веществами, раздражающими слизистые оболочки верхних дыхательных путей, рабочие получают масляные ингаляции.

    Медицинские работники обязаны осуществлять систематический контроль за содержанием веществ в воздухе производственных помещений, привлекая к нему заводские и санитарные лаборатории.

    В целях эффективной борьбы с профессиональными отравлениями все случаи их возникновения необходимо регистрировать и тщательно расследовать медицинскими работниками совместно с представителями администрации и профсоюзной организации. Большое значение имеет соблюдение рабочими правил личной гигиены. Рабочую одежду следует оставлять в производственном помещении и здесь же необходимо организовать систематическую стирку её. Перед приёмом пищи, курением и питьём воды рабочие должны тщательно вымыть руки, лицо и прополоскать рот. На ряде производств по окончании работы необходимо принять душ и сменить нательное бельё. На многих производствах рабочие бесплатно получают в качестве профилактического питания молоко. Оно значительно увеличивает физиологическую ценность обычного пищеварительного рациона и благодаря этому способствует повышению защитных сил организма. Для рабочих ряда производств разработано пять специальных рационов профилактического питания.

    Ионизирующие излучения. Ионизирующие излучения являются особо опасным фактором производственной среды, поскольку они невидны, не обнаруживаются органами чувств, не вызывают болезненных ощущений даже при воздействии опасных для жизни доз, способны проникать через ограждения помещений и другие экраны. Вместе с тем источники ионизирующих излучений в настоящее время широко применяются в медицине (рентгенодиагностика, радиотерапия), науке и народном хозяйстве. Основными документами, регламентирующими гигиену труда с ними и охрану окружающей среды от загрязнения радионуклидами, являются «Нормы радиационной безопасности» (НРБ-76/87) и «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» 10СП-72/87).

    Источники ионизирующих излучений делят на закрытые и открытые. При закрытых (рентгеновский аппарат, гамма-излучатель, бетатрон и др.) окружающая среда не загрязняется радионуклидами, при открытых (непосредственно радионуклиды) загрязняется.

    При работе с источниками ионизирующего излучения возможно три вида воздействия на человека: внешнее облучение всего тела или его части (рентгеновским излучением, γ-лучами, нейтронами и др.), внутреннее облучение при поступлении в организм радиоактивных веществ (открытые источники) и смешанное. Радиоактивные вещества могут поступать в организм с пищей, а также в виде газов, паров, аэрозолей и в жидком виде через дыхательные пути, пищевой канал, кожу. При попадании внутрь наиболее опасны α-излучатели из-за создания большой плотности и ионизации.

    При работе с источниками ионизирующего излучения закрытого типа основными принципами профилактики являются защита количеством, временем, расстоянием, экранированием. Защита количеством заключается в проведении работы с как можно менее интенсивным источником излучения. Защита временем сводится к уменьшению продолжительности облучения персонала за счёт ограничения длительности рабочего дня и количества выполняемых за смену процедур, правильной организации работы и продуманной технологии выполнения тех или иных операций, повышения квалификации персонала и его тренировки.

    Защита расстоянием основана на том, что мощность облучения обратно пропорциональна квадрату расстояния между источником (точечным) излучения и рабочим местом.

    Производственный травматизм. Под производственной травмой понимают повреждения внезапного характера, непосредственно связанные с воздействием производственного фактора, нарушающие анатомическую целостность органа (или всего организма) либо вызывающие нарушение его физиологических функций, произошедшие в цехе или других производственных помещениях или на территории предприятия, а также травмы, полученные в пути на работу и с работы.

    Различают:

    Механические травмы с повреждением тканей;

    Микротравмы;

    Термические ожоги и отморожения;

    Химические травмы;

    Электротравмы.

    Медработники промышленного предприятия выясняют причину возникновения травмы, проводят их регистрацию и учёт, проводят сан-просвет работу по пропаганде мероприятий в борьбе с производственным травматизмом.

    ГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ УКРАИНЫ

    ПОСТАНОВЛЕНИЕ

    Санитарные нормы микроклимата производственных помещений

    ДСН 3.3.6.042-99

    Термины и определения

    1. Производственное помещение - замкнутое пространство в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение части рабочего дня) осуществляется трудовая деятельность людей.

    2. Рабочая зона - пространство, в котором находятся рабочие места постоянного или непостоянного (временного) пребывания работников.

    3. Рабочее место - место постоянного или временного пребывания работающего в процессе трудовой деятельности.

    4. Постоянное рабочее место - место, на котором работающий находится более 50% рабочего времени или более 2-х часов непрерывно. Если при этом работа осуществляется в различных пунктах рабочей зоны, то вся эта зона считается постоянным рабочим местом.

    5. Непостоянное рабочее место - место, на котором работающий находится менее 50% рабочего времени или менее 2-х часов непрерывно.

    6. Микроклимат производственных помещений - условия внутренней среды этих помещений, влияющих на тепловой обмен работающих с окружением путем конвекции, кондукция, теплового излучения и испарения влаги. Эти условия определяются сочетанием температуры, относительной влажности и скорости движения воздуха, температуры окружающих человека поверхностей и интенсивности теплового (инфракрасного) излучения.

    7. Оптимальные микроклиматические условия сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают хранение нормального теплового состояния организма без активизации механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

    8. Допустимые микроклиматические условия - сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать изменения теплового состояния организма и быстро проходят и нормализуются и сопровождаются напряжением механизмов терморегуляции в пределах физиологической адаптации. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и снижение работоспособности.

    9. Теплый период года - период года, характеризующийся среднесуточной температурой внешней среды выше +10 ° C.

    10. Холодный период года - период года, характеризующийся среднесуточной температурой наружного воздуха, равной +10 ° C и ниже.

    11. Среднесуточная температура наружного воздуха - средняя величина температуры наружного воздуха, измеренная в определенные часы суток через одинаковые интервалы времени. Она принимается по данным метеорологической службы.

    13. Легкие физические работы (категория I) охватывают виды деятельности, при которых расход энергии составляет 105 - 140 Вт (90 - 120 ккал / час.) - категория Iа и 141 - 175 Вт (121 - 150 ккал / час.) - категория Iб.К категории Iа относятся работы, выполняемые сидя и не требующие физического напряжения. К категории Iб относятся работы, выполняемые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением.

    14. Физические работы средней тяжести (категория II) охватывают виды деятельности, при которых расход энергии составляет 176 - 232 Вт (151 - 200 ккал / час.) - Категория IIа и 233 - 290 Вт (201 - 250 ккал / час.) - Категория IIб. К категории IIа относятся работы, связанные с хождением, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения. К категории IIб относятся работы, выполняемые стоя, связанные с хождением, перемещением небольших (до 10 кг) грузов и сопровождающиеся умеренным физическим напряжением.

    15. Тяжелые физические работы (категория III) охватывают виды деятельности, при которых затраты энергии составляют 291 - 349 Вт (251 - 300 ккал / час.). К категории III относятся работы, связанные с постоянным перемещением, переносом значительных (свыше 10 кг) грузов, требующих больших физических усилий.

    Общие положения

    Санитарные нормы распространяются на условия микроклимата в пределах рабочей зоны производственных помещений предприятий, учреждений и т.п., независимо от их формы собственности и подчинения.

    Этот документ регламентирует нормативные величины оптимальных и допустимых показателей микроклимата и устанавливает требования к методам измерения микроклиматических параметров и их оценки.

    Нормы не распространяются на микроклимат подземных и горных выработок, передвижных транспортных средств, животноводческих и птицеводческих помещений для хранения сельскохозяйственной продукции, холодильников, складов и т.д.., А также помещений, в которых параметры микроклимата устанавливаются в соответствии с технологическими требованиями.

    1. Требования к параметрам микроклимата

    Микроклиматические условия производственных помещений характеризуется следующими показателями:

    Температура воздуха,

    Относительная влажность воздуха,

    Скорость движения воздуха,

    Интенсивность теплового (инфракрасного) излучения,

    Температура поверхности.

    По степени влияния на тепловое состояние человека микроклиматические условия подразделяются на оптимальные и допустимые.

    Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года. При одновременном выполнении в рабочей зоне работ различной категории тяжести уровне показателей микроклимата должны устанавливаться с учетом наиболее многочисленной группы работников.

    Величины показателей микроклимата в рабочей зоне приведены в табл. 1 и 2, а объяснения к ним - в п. 1.1 и 1.2.

    1.1. Оптимальные условия микроклимата

    1.1.1. Оптимальные условия микроклимата устанавливаются для постоянных рабочих мест (табл. 1.

    1.1.2. Показатели температуры воздуха в рабочей зоне по высоте и по горизонтали, а также в течение рабочей смены не должны выходить за пределы нормированных величин оптимальной температуры для данной категории работ, указанной в табл. 1.

    1.1.3. Температура внутренних поверхностей рабочей зоны (стены, пол, потолок), технологического оборудования (экраны и т.д..), Наружных поверхностей технологического оборудования, ограждающих конструкций не должна выходить более чем на 2 ° C за пределы оптимальных величин температуры воздуха для данной категории работ, указанных в табл.1.

    1.1.4. При выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением в кабинетах, пультах и постах управления технологическими процессами, в залах вычислительной техники и других помещениях должны соблюдаться оптимальные условия микроклимата (температура воздуха 22 - 24 ° C, относительная влажность 60 - 40 %, скорость движения воздуха не более 0,1 м / сек.).

    Таблица 1

    Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений

    Период

    года

    работ

    Температура

    воздуха

    Относительная

    влажность

    Скорость

    движения, м / сек.

    Холодный

    период

    года

    Легкая Iа

    22 - 24

    60 - 40

    Легкая Iб

    21 - 23

    60 - 40

    Средней тяжести IIа

    19 - 21

    60 - 40

    Средней тяжести IIб

    17 - 19

    60 - 40

    Тяжелая III

    16 - 18

    60 - 40

    Теплый

    период

    года

    Легкая Iа

    23 - 25

    60 - 40

    Легкая Iб

    22 - 24

    60 - 40

    Средней тяжести IIа

    21 - 23

    60 - 40

    Средней тяжести IIб

    20 - 22

    60 - 40

    Тяжелая III

    18 - 20

    60 - 40

    1.2. Допустимые условия микроклимата

    1.2.1. Допустимые величины микроклиматических условий устанавливаются в случаях, когда на рабочих местах нельзя обеспечить оптимальные величины микроклимата по технологическим требованиям производства, технической недосягаемостью и экономически обоснованной нецелесообразностью.

    1.2.2. Величины показателей, характеризующих допустимые микроклиматические условия, устанавливаемые для постоянных и непостоянных рабочих мест, которые приведены в табл. 2.

    1.2.3. Перепад температуры воздуха по высоте рабочей зоны при обеспечении допустимых условий микроклимата не должен быть более 3 ° C для всех категорий работ, а по горизонтали рабочей зоны и в течение рабочей смены - выходить за пределы допустимых температур для данной категории работы, указанных в табл. 2.

    Таблица 2

    Допустимые величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений

    Период

    года

    работ

    Температура, ° C

    Относительная воло-

    гость (%) на

    рабочих

    местах -

    постоянных и

    непостоянных

    Скорость

    движения (м / сек.) на

    рабочих

    местах -

    постоянных и

    непостоянных

    Верхний предел

    Нижний предел

    На постоянных рабочих местах

    На постоянных рабочих местах

    На непостоянных рабочих местах

    Холодный

    период

    движения

    Легкая Iа

    не более 0,1

    Легкая Iб

    не более 0,2

    Средней тяжести IIа

    не более 0,3

    Средней тяжести IIб

    не более 0,4

    Тяжелая III

    не более 0,5

    Теплый

    период

    года

    Легкая Iа

    55 - при 28 ° C

    0,2 - 0,1

    Легкая Iб

    60 - при 27 ° C

    0,3 - 0,1

    Средней тяжести IIа

    65 - при 26 ° C

    0,4 - 0,2

    Средней тяжести IIб

    70 - при 25 ° C

    0,5 - 0,2

    Тяжелая III

    75 - при 24 ° C и ниже

    0,6 - 0,5

    1.2.4. Температура внутренних поверхностей помещений (стены, пол, потолок), а также температура наружных поверхностей технологического оборудования или его защитных устройств (экранов и т.п..) Не должна выходить за пределы допустимых величин температуры воздуха для данной категории работ, указанных в табл. 2.

    1.2.5. Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляция от застекленных ограждений не должна превышать 35,0 Вт / м 2 - при облучении 50% и более поверхности тела, 70 Вт / м 2 - при величине облучаемой поверхности от 25 до 50%, и 100 Вт / м 2 - при облучении не более 25% поверхности тела работающего.

    При наличии источников с интенсивностью 35,0 Вт / м 2 и более температура воздуха на постоянных рабочих местах не должна превышать верхних границ оптимальных значений для теплого периода года, на непостоянных - верхних границ допустимых значений для постоянных рабочих мест.

    1.2.6. При наличии открытых источников излучения (нагретый металл, стекло, открытое пламя) допускается интенсивность облучения до 140,0 Вт / м 2. Размер облучаемой площади не должна превышать 25% поверхности тела работающего при обязательном использовании средств индивидуальной защиты (спецодежда, очки, щитки).

    1.2.7. В производственных помещениях, расположенных в районах со средней максимальной температурой самого жаркого месяца выше 25 ° C согласно СНиП «Строительная климатология» допускаются отклонения от величин показателей микроклимата, указанных в табл. 2, для данной категории работ, но не более чем на 3 ° C. При этом скорость движения воздуха должна быть увеличена на 1,1 м / сек., а относительная влажность воздуха понижена на 5% при повышении температуры на каждый градус выше верхней границы допустимых температур воздуха, указанных в табл. 2.

    1.2.8. В производственных помещениях, в которых нельзя установить допустимые величины микроклимата через технологические требования к производственному процессу, техническую недосягаемость или экономически обоснованную нецелесообразности предусматриваются мероприятия по защите от возможного перегревания и охлаждения, которые указаны в разд. 2.

    2. Основные требования к средствам нормализации микроклимата и теплозащите

    2.1. Нормализация неблагоприятных микроклиматических условий осуществляется посредством комплекса мероприятий и способов, которые включают: строительно-планировочные, организационно-технологические, санитарно-технические и др.. меры коллективной защиты. Для профилактики перегреваний и переохлаждений рабочих используются средства индивидуальной защиты, медико-биологические и т.п..

    2.2. Формируемые параметры микроклимата на рабочих местах должны быть достигнуты, в первую очередь, за счет рационального планирования производственных помещений и оптимального размещения в них оборудования по тепло-, холодо-и влаговыделений. Для уменьшения термических нагрузок на работающих предусматривается максимальная механизация, автоматизация и дистанционное управление технологическими процессами и оборудованием.

    2.3. В помещениях со значительными площадями остекленных поверхностей предусматриваются мероприятия по защите от перегрева при попадании прямых солнечных лучей в теплый период года (ориентация оконных проемов восток - запад, устройство жалюзи и др.)., От радиационного охлаждения - в ​​ зимний (экранирование рабочих мест). При температуре внутренних поверхностей ограждающих конструкций, остекление ниже или выше допустимых величин рабочие места должны быть удалены от них на расстояние не менее 1 м.

    2.4. В производственных пр имищеннях с избытком (явного) тепла используют естественную вентиляцию (аэрацию).Аэрационные фонари и шахты располагают непосредственно над основными источниками тепла на одной оси. При невозможности или неэффективности аэрации устанавливают механическую общеобменную вентиляцию.

    При наличии единичных источников тепловыделений оснащают оборудование местной вытяжной вентиляцией в виде локальных отсосов, вытяжных зонтов и др..

    2.5. В замкнутых и небольших по объему помещениях (кабины кранов, посты и пульты управления, изолированные боксы, комнаты отдыха и т.д.) при выполнении операторских работ используют системы кондиционирования воздуха с индивидуальной регулировкой температуры и объема подаваемого воздуха.

    2.6. При наличии источников теплоизлучения принимают комплекс мер по теплоизоляции оборудования и нагретых поверхностей с помощью теплозащитного оборудования.

    В зависимости от принципа действия теплозащитные средства делятся на:

    Теплоотражающие - металлические листы (сталь, железо, алюминий, цинк, полированные или покрытые белой краской и т.д.) одинарные или двойные; закаленное стекло с пленочным покрытием; металлизированные ткани; стеклоткани; пленочный материал и др..;

    Тепловбираючи - стальные или алюминиевые листы или коробки с теплоизоляцией из асбестового картона, шамотного кирпича, войлока, вермикулитовых плит и др.. теплоизоляторами; стальная сетка (одинарная или двойная с закаленным силикатным стеклом); закаленное силикатное органическое стекло и др..;

    Теплоотводящие - экраны водоохлаждающие (из металлического листа или сетки с водой, стекающей), водяные завесы и др..;

    Комбинированные.

    В зависимости от особенностей технологических процессов применяют прозрачные, полупрозрачные экраны. Выбор теплозащитных средств обусловливается интенсивностью и спектральным составом излучения, а также условиями технологического процесса.

    Теплозащитные экраны должны обеспечивать нормируемые величины облучения рабочих; быть удобными в эксплуатации; не затруднять обзор, чистки и смазки агрегатов; гарантировать безопасную работу с ним; иметь прочность, легкость изготовления и монтажа; иметь достаточно длительный срок эксплуатации; в процессе эксплуатации сохранять эффективные теплозащитные качества.

    2.7. При невозможности техническими средствами обеспечить допустимые гигиенические нормативы облучения на рабочих местах используются средства индивидуальной защиты (СИЗ) - спецодежда, спецобувь, СИЗ для защиты головы, глаз, лица, рук.

    В зависимости от назначения предусматриваются такие СИЗ:

    Для постоянной работы в горячих цехах - спецодежда (костюм мужской войлочный), а при ремонте горячих печей и агрегатов - автономная система индивидуального охлаждения в комплексе с войлочным костюмом;

    При аварийных работах - теплоотражающий комплект из металлизированной ткани;

    Для защиты ног от теплового излучения, искр и брызг расплавленного металла, контакта с нагретыми поверхностями - обувь кожаная специальное для работающих в горячих цехах;

    Для защиты рук от ожогов - вачеги, рукавицы суконные, брезентовые, комбинированные с наладонниками из кожи и спилка;

    Для защиты головы от тепловых облучений, искр и брызг металла - войлочная шляпа, защитная каска с подшлемником, каски текстолитовые или из поликарбоната;

    Для защиты глаз и лица - щиток теплозащитный сталевара, с прилажены для него защитными очками со светофильтрами, маски защитные с прозрачным экраном, очки защитные, козырьковые со светофильтрами.

    Спецодежда должна иметь защитные свойства, которые исключают возможность нагрева его внутренних поверхностей на любом участке до температуры 313 К (40 ° C) в соответствии со специальными ГОСТам (ГОСТ 12.4.176-89, ГОСТ 12.4.016-87).

    2.8. В производственных помещениях, в которых на рабочих местах невозможно установить регламентированные интенсивности теплового облучения работающих через технологические требования, техническую недосягаемость или экономически обоснованную нецелесообразности, используются обдува, душування, водовоздушные душування и т.п..

    При тепловом облучении от 140 до 350 Вт / м 2 необходимо увеличивать на постоянных рабочих местах скорость движения воздуха на 0,2 м / с больше нормированные величины; при тепловом облучении, превышающей 350 Вт / м 2, целесообразно применять воздушное душування рабочих мест (табл.3) (ДНАОП 0.03-1.23-82).

    Таблица 3

    Температура и скорость движения воздуха при воздушной душування

    работ

    Температура воздуха в рабочей зоне,

    ° C

    Скорость движения уезд-

    ря, м / сек.

    Температура воздуха в струе, душа (° C) при интенсивности инфракрасного облучения, Вт / м 2

    350

    700

    1400

    2100

    2800

    Легкая

    Iа, Iб

    до 28

    Средней

    тяжести

    IIа, IIб

    до 27

    Тяжелая

    до 26

    2.9 Для профилактики перегревания работающих в условиях нагревающего микроклимата организуют рациональный режим труда и отдыха.

    При микроклиматических условиях, превышающих допустимые параметры, внутрисменных режимов труда и отдыха организуют за счет продолжительности рабочего времени:

    При температуре воздуха, превышающей допустимый уровень, продолжительность регламентированных перерывов составляет не менее 10% рабочего времени на каждые 2 ° C превышения;

    При сочетании температуры воздуха, превышающей допустимый уровень, с относительной влажностью, которая превышает 75%, продолжительность регламентированных перерывов рекомендуется устанавливать не менее 20% рабочего времени;

    При интенсивности теплового облучения более 350 Вт / м 2 и облучении свыше 25% поверхности тела продолжительность непрерывной работы и регламентированных перерывов устанавливается в соответствии с данными, приведенными в табл.4 (ДНАОП 0.03-1.23-82).

    Таблица 4

    Допустимая продолжительность непрерывного инфракрасного облучения и регламентированных перерывов в течение часа

    Интенсивность ИК

    облучения,

    Вт / м 2

    Продолжительность

    непрерывных

    периодов

    облучения,

    мин.

    Продолжительность

    перерывов,

    мин.

    Суммарное

    облучения

    в течение смены,

    %

    350,0

    20,0

    до 50

    700,0

    15,0

    10,0

    до 45

    1050,0

    12,0

    12,0

    до 40

    1400,0

    13,0

    до 30

    1750,0

    14,0

    до 25

    2100,0

    15,0

    до 15

    2450,0

    12,0

    до 15

    2.10. При проведении ремонтных работ внутри производственного оборудования и агрегатов (печах, ковшах, регенераторах и т.д..) С температурой воздуха от 28 до 40 ° C и температурой ограждений до 45 ° C соблюдают режим труда и отдыха согласно величин, приведенных в табл. 5 (ДНАОП 0.03-1.23-82).

    2.11. При выполнении работ в условиях согласно пунктам 2.8 - 2.10 должно быть оборудовано помещение в рабочей зоне с оптимальным микроклиматом (комнаты, кабины, боксы с кондиционерами и оборудованием радиационного охлаждения) для отдыха на время регламентированных перерывов, приема пищи и т.д.. - В целях профилактики перегреваний.

    2.12. Для профилактики нарушений водно-солевого баланса тех, кто работает в условиях нагревающего микроклимата, обеспечивающими компенсацию жидкости, солей (натрий, калий, кальций и др.)., Микроэлементов (магний, медь, цинк, йод и др.)., Растворимых в жидкости витаминов, которые выделяются из организма потом.

    2.13. Должны проводиться предварительные (при приеме на работу) и периодические медицинские осмотры в процессе работы в соответствии с действующим приказом Минздрава Украины.

    2.14. Для предупреждения возможного переохлаждения работающих в холодный период в помещениях, где на рабочих местах микроклиматические условия ниже допустимых величин, устраивают воздушные или воздушно-тепловые завесы у ворот, технологических и др.. отверстий в наружных стенах, а также тамбуры-шлюзы:

    Выделяют специальные места для обогрева, устанавливают средства для быстрого и эффективного обогрева верхних и нижних конечностей (локальный лучево-контактный обогрев и т.д.).;

    Устанавливают внутрисменных режимов труда и отдыха, предусматривающий возможность перерывов для обогрева;

    Обеспечивают работающих средствами индивидуальной защиты (одежда, обувь, рукавицы) соответственно требованиям ДСТУ (ГОСТ 12.4.084-80, ГОСТ 12.4.088-80).

    Таблица 5

    Продолжительность периодов работы и отдыха при проведении ремонтных работ производственного оборудования при температуре воздуха выше 28 ° C

    Температура

    воздуха, ° C

    Продолжительность одноразовых периодов (хвил.)

    Соотношение труда и отдыха

    труд

    отдых

    1,33

    1,20

    1,10

    1,00

    0,90

    0,80

    3. Общие требования к методам измерения параметров микроклимата и их оценки

    3.1. Измерение параметров микроклимата проводятся на рабочих местах и ​​в рабочей зоне в начале, в середине и конце рабочей смены. При колебаниях микроклиматических условий, связанных с технологическим процессом и другими причинами, измерения производятся с учетом самых больших и маленьких величин термических нагрузок в течение рабочей смены.

    3.2. Измерения осуществляются не менее 2-х раз в год (теплый и холодный периоды года) в порядке текущего санитарного надзора, а также при приеме в эксплуатацию нового технологического оборудования, внесении технических изменений в конструкцию действующего оборудования, организации новых рабочих мест.

    При проведении измерений в холодный период года температура наружного воздуха не должна быть выше средней расчетную температуру, в теплый период - не ниже средней расчетную температуру, которая принимается для отопления и кондиционирования по оптимальным и допустимым параметрам.

    3.3. Измерение параметров микроклимата на рабочих местах проводятся на высоте 0,5 - 1,0 м от пола - при работе сидя, 1,5 м от пола - при работе стоя.

    3.4. В помещениях с большей плотностью рабочих мест при отсутствии источников локального тепловыделения, охлаждения и влаговыделений измерения проводятся в зонах, равномерно распределенных по всему помещению. При этом в помещениях, которые имеют площадь до 100 м 2, должно быть не менее 4-х зон, которые оцениваются, а площадью до 400 м 2 - не менее 8-ми.В помещениях с площадью более 400 м 2 - количество определяется расстоянием между ними, которая не должна превышать 10 м.

    3.5. При наличии нескольких источников инфракрасного излучения или источников большой площади измерения инфракрасного излучения на рабочем месте проводится в направлении максимума потока от источника. Измерение осуществляется через каждые 30 - 40 ° C вокруг рабочего места для определения максимального облучения. При этом приемник прибора располагают перпендикулярно падающему потоку энергии.

    3.6. Температура и относительная влажность воздуха измеряются приборами, основанными на психрометрические принципах. Возможно использование недельных и суточных термографов и гигрографов.

    3.7. Скорость движения воздуха измеряется анемометрами ротационной действия. Малые величины скорости движения воздуха (менее 0,3 м / сек.), Особенно при наличии разнонаправленных потоков, измеряются електроанемометрамы, цилиндрическими или шаровыми кататермометр.

    3.8. Температура поверхностей ограждающих конструкций (стен, потолка, пола) или устройств (экранов и т.п..), Наружных поверхностей технологического оборудования измеряются приборами, работающими по принципу термоэлектрического эффекта.

    3.9. Интенсивность теплового облучения измеряется приборами с чувствительностью в инфракрасном диапазоне, действующих на принципах термо-, фотоэлектрического и других эффектов, или определяется расчетным методом с температурой источника.

    3.10. Диапазон измерения и допустимая погрешность приборов должна соответствовать требованиям табл. 6.

    Таблица 6

    Требования к измерительным приборам

    Измеряемые

    величины

    Диапазон

    измерений

    Допустимая

    погрешность

    приборы

    1. Температура воздуха, ° C

    30 До + 5

    ± 0,1

    Аспирационный психрометр с ртутными термометрами

    2. Относительная влажность воздуха,%

    15 до 100

    ± 5,0

    Те же и записывающие гигрографы

    3. Температура поверхности, ° C

    30 До 100

    ± 1,0

    Электротермометров, термопары и т.п..

    4. Скорость движения воздуха, м / сек.

    0,1 - 0,5 до 0,6 - 5,0

    ± 0,1 - ± 0,2

    Анемометры ротационной действия

    5. Интенсивность инфракрасного облучения

    10,0 - 20000,0

    ± 10%

    Актинометр, термостовбци, болометры, радиометры со спектральной чувствительностью в диапазоне 0,30 - 20,0 мкм

    3.11. Параметры оцениваются:

    Как оптимальные, если среднее значение и результаты не менее 2 / 3 измерений находятся в пределах оптимальных величин (табл. 1.

    Как допустимые, если среднее значение и результаты не менее 2 / 3 измерений находятся в пределах допустимых величин (табл. 2.

    Как такие, которые не соответствуют Санитарным нормам, если среднее значение и результаты более 2 / 3 измерений не соответствуют положениям раздела 1.

    Введение

    Работая над данным рефератом, я стремилась полнее раскрыть содержание условий микроклимата на производстве, рассмотреть ее актуальные проблемы в контексте современности.

    Условии труда – система обеспечения жизни человека работников в процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

    Сохраняя в первую очередь жизни и здоровья работников, является важнейшим направлением государственной политики в области охраны труда.

    Таким образом, учитывая вышеизложенное, следует отметить, что вопросы организации условии микроклимата на предприятиях промышленности не только не теряют своей актуальности, но и привлекают к себе все более пристальное внимание, поскольку с развитием производства на таких предприятиях возникают новые направления, повышается уровень сложности решаемых задач по обеспечению безопасности труда человека на производстве.


    1. Микроклимат производственных помещений

    Микроклимат - как фактор создания благоприятных условии труда.

    Микроклимат производственных помещений - это метеорологические условия внутренней среды, определяемые действующими на организм человека сочетаниями температуры, относительно влажности и скорости движения воздуха, а также теплового облучения и температуры поверхностей ограждающих конструкций и технологического оборудования.

    Для многих пищевых предприятий со значительным выделением теплоты и влаги микроклимата - основная характеристика условий труда на рабочих местах, от которой зависят не только состояние здоровья, трудоспособность, производительность работающих, но и затраты на льготы и компенсации за неблагоприятные условия труда, уровень текучести кадров. В связи с этим нормирование микроклимата на пищевых предприятиях – одна из важных задач охраны труда .

    Требования к метеорологическим условиям регламентируют Санитарные правила и нормы – СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений», которые устанавливают оптимальные и допустимые величины показателей микроклимата для рабочей зоны закрытых производственных помещений с учетом характеристики трудового процесса, тяжести выполняемой работы, времени пребывания на рабочем месте и периодов года, а также методы измерения и оценки этих показателей на действующих предприятиях.

    Требования не распространяются на такие помещения пищевых предприятий, как склады, соловидни, помещения для хранения сельскохозяйственной продукции, холодильники и другие, в которых по технологическим причинам должна соблюдаться определенные величины температуры и относительной влажности воздуха.

    Показатели микроклимата должны обеспечивать хранения теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

    - оптимальные микроклиматические условия

    - оптимальные величины показателей микроклимата

    - допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека в течение 8-часовой рабочей смены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущении теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности.

    - допустимые величины показателей микроклимата

    2. Микроклимат и его показатели

    Микроклимат производственных помещений – это метеорологические условия внутренней среды, определяемые действующими на организм человека сочетаниями температуры, относительно влажности и скорости движения воздуха, а также теплового облучения и температуры поверхностей ограждающих конструкций и технологического оборудования.

    Для многих пищевых предприятий со значительным выделением теплоты и влаги микроклимат – основная характеристика условий труда на рабочих местах, от которой зависят не только состояние здоровья, трудоспособность, производительность работающих, но и затраты на льготы и компенсации за неблагоприятные условия труда, уровень текучести кадров. В связи с этим нормирование микроклимата на пищевых предприятиях – одна из важных задач охраны труда.

    Требования к метеорологическим условиям регламентируют Санитарные правила и нормы – СанПиН 2.2.4.548 – 96 «Гигиенические требования к микроклимату производственных помещений», которые устанавливают оптимальные и допустимые величины показателей микроклимата для рабочей зоны закрытых производственных помещений с учетом характеристики трудового процесса, тяжести выполняемой работы, времени пребывания на рабочем месте и периодов года, а также методы измерения и оценки этих показателей на действующих предприятиях.

    Требования не распространятся на такие помещения пищевых предприятий, как склады, солодовни, помещения для хранения сельскохозяйственной продукции, холодильники и другие, в которых по технологическим причинам должны соблюдаться определенные величины температуры и относительной влажности воздуха.

    Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

    Оптимальные микроклиматические условия обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции организма человека, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

    Оптимальные величины показателей микроклимата необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы, связанные с нервно-эмоциональным напряжением (работы операторов в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.).

    Допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека в течение 8-часовой рабочей смены. Они на вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности.

    Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям, техническим и экономическим обоснованным причинам не могут быть обеспечены оптимальные величины.

    3. Терморегуляция организма человека

    В основу нормирования микроклимата положены условия, при которых организм человека сохраняет нормальный тепловой баланс за счет определенных физиологических процессов (прилив крови к кожаному покрову, потоотделение и др.), благодаря которым осуществляется терморегуляция, обеспечивающая сохранение постоянной температуры тела путем теплового обмена с внешней средой.

    На терморегуляцию отрицательно влияют повышенная влажность и скорость движения окружающего воздуха, особенно в сочетании с высокой температурой. При повышенной относительной влажности и снижении скорости воздуха интенсивность испарения влаги (пота) с поверхности тела снижается. Движение воздуха имеет способность усиливать теплообмен, однако в холодной период года оно действует на организм человека неблагоприятно. Вредное воздействие оказывает также чрезмерная сухость воздуха (при влажности ниже 30%).

    В результате терморегуляции происходит изменение обмена веществ и в зависимости от температуры окружающей среды повышается или понижается уровень тепловыделений. Интенсивность обмена веществ и уровень тепловыделений существенно не изменяются при температуре воздуха 15…20ºС и относительной влажности 35…70%. При температуре воздуха до 30ºС отдача теплоты организмом осуществляется конвекцией и излучением, а при более высоких температурах – главным образом путем усиленного образования и испарения пота.

    Потоотделение при выполнении тяжелых физических работ и температуре воздуха 30ºС и выше достигает 10 дм³ в смену. Вместе с водой организм человека теряет 30…40 г соли, что на 20…30 г больше, чем при нормальных условиях. Поэтому в горячих цехах рабочие в качестве профилактического средства должны употреблять для питья соленую воду.

    4. Особенности нормирования показателей микроклимата

    Оптимальные и допустимые абсолютные величины показателей микроклимата выбираются в последовательности, указанной в зависимости от следующих факторов.

    Первоначально устанавливаются характеристика трудового процесса, и если трудовой процесс вызывает нагрузку преимущественно на центральную нервную систему (напряженности труда), то в помещении должны обеспечиваться оптимальные показатели микроклимата А1 . Если установленная характеристика отражает преимущественно нагрузку на опорно-двигательный аппарат (тяжесть труда), то в помещении могут быть обеспечены допустимые показатели микроклимата А 2 .

    Рекомендуем почитать

    Наверх