Системы пожаротушения тонкораспылённой водой. Пожаротушение тонкораспыленной водой: как это работает? Огнетушащие вещества и средства пожаротушения

Оборудование для магазина 06.12.2020
Оборудование для магазина

Сегодня существует масса систем пожаротушения. Все они основаны на различных технологиях. Наиболее популярная - пожаротушение тонкораспыленной водой. Это самый эффективный способ борьбы с пожарами классов А и B.

Что это значит? При возникновении пожара класса А первым делом воспламеняются различные твердые предметы и материалы. Это могут быть изделия из разных пород древесины, пластмасса, продукция из текстильных материалов, резина. Второй вид пожаров – это процесс неконтролируемого горения различных жидких веществ, которые не растворимы в воде. Это могут быть различные продукты нефтепереработки, бензины, а также парафины и прочие вещества. Также во второй группе пожаров, с которыми может бороться система пожаротушения тонкораспыленной водой, относятся воспламенения веществ, которые могут смешиваться с водой. Это глицерин, ацетон, различные спирты.

Популярность применения тонкораспыленной воды для тушения пожаров

Если верить статистическим данным, то 90% всех пожаров тушат с использованием воды. Но, несмотря на то, что вода является очень популярными и эффективным средством против огня, применение ее имеет и положительные и отрицательные моменты. Так, при ликвидации даже сравнительно небольших возгораний наблюдается достаточно высокий ее расход.

Также в процессе тушения при воздействии жидкости портятся различные ценности без всякой возможности их восстановления, а объект, где произошел пожар, будет неминуемо затоплен.

При использовании воды в качестве средства для ликвидации очагов возгорания необходимы дополнительные резервуары, где может хранится ее запас. При этом они должны быть оснащены пожарными резервуарами и насосными станциями.

Пожаротушение тонкораспыленной водой

Этот метод практически лишен подобных недостатков. В процессе пожаротушения ни одно помещение не затопится, а вот огонь будет эффективно устранен. Но если вода именно тушит пожар, то принцип действия этого метода немного в другом. Здесь специальное оборудование формирует облако из мелких капелек воды.

Пожаротушение тонкораспыленной водой существенно отличается от традиционного метода борьбы с возгораниями. Этот способ можно даже формально отнести к поверхностной технологии. Но нужно понимать, что распыляемый состав, как показывается практика, охватывает весь объем горения. При этом наблюдается эффект увеличения.

Высокие температуры запускают процесс образования пара, вследствие чего уменьшается количество кислорода, и он не подается к очагу горения. Затем наблюдается резкое снижение температуры, скорость горения сводится к критической. Чтобы избежать повторных возгораний, этот туман из мелких капель воды может поддерживаться в помещении до 158 минут.

Благодаря природным характеристикам воды она растворяет в себе огромное количество всевозможных веществ. Это позволяет значительно снизить риск задымления, так как мелкодисперсный водяной туман способен вбирать в себя частицы дыма.

Для возгораний класса A используют только воду – возможностей ее более чем достаточно.
Если пожар более катастрофический, тогда допускается применение специальных пенообразующих добавок.

Принцип действия

Итак, чаще всего для ликвидации возгорания в зданиях применяется автоматическое пожаротушение тонкораспыленной водой. Это решение позволяет эффективно победить возгорания классов А и B без нанесения существенного ущерба помещению и ценностям, находящимся в нем. Работают эти автоматические решения следующим образом. При помощи специальных пожарных датчиков различных типов система определяет, где расположен очаг пожара. Затем автоматика отправляет сигнал об опасности и пожаре на пульт, где будет активизировано запорно-пусковое оборудование на основном модуле.

Затем запорно-пусковое устройство откроет доступ для газа и отправит его в резервуар с водой. В этой емкости будет сформирован состав из газа и жидкости. Также в составе есть специальные добавки, которые позволяют значительно улучшить и ускорить процесс тушения пожара. Смесь воды и газа по специальному пожарному трубопроводу будет подана на распыляющее оборудование.

Процесс выброса воды может контролироваться как при помощи автоматических решений, так и дистанционным образом, благодаря действию соответствующих датчиков давления, установленных на ключевых местах трубопровода. Благодаря тому, что размер одной капли мелкодисперсной воды составляет около 100 мкм, время борьбы со средним пожаром составляет не более 1 минуты.

Виды модульных установок

Модульное оборудование может быть с высоким или низким рабочим давлением. Так, системы высокого давления оснащены резервуарами, заполненными азотом. Кроме этого, оборудование оснащается насосами высокого давления. Нужная консистенция рабочей смеси в этом случае достигается механически. Установки для работы с низким давлением предусматривают отдельное хранение газа, достаточного для пуска в случае необходимости.

Кроме рабочего давления, эти системы делятся на стационарные комплексы и мобильные модули.
Стационарная модульная установка пожаротушения тонкораспыленной водой может быть централизованной либо автономной, на базе специальных модулей. Мобильные системы – это обычные огнетушители.

Автономные решения стоит использовать в одном помещении или же в нескольких, объем и площадь которых невелики. Для помещений, площадь которых составляет более 1000 кв. м, необходимо выполнять зонирование пространства, чтобы максимально рационально разместить распределительные устройства и резервуары для газа.

Области применения

Установки пожаротушения тонкораспыленной водой высокого давления и их использование регламентируются СП 5.13130.2009. Применяют для борьбы с пожарами категорий А, B и С. Также допускается монтаж и использование этого оборудования в местах установки различного электрооборудования до 1000 В.

Рекомендуется применять такие системы на многоуровневых закрытых автомобильных парковках, в промышленных цехах и складах, в архивах, библиотеках. Также рекомендуется оснащать этим оборудованием культурные и развлекательные комплексы, выставочные центры. Сегодня модули пожаротушения тонкораспыленной водой стали также применять в торговых, офисных помещениях, гостиницах.

Недостатки такого способа борьбы с огнем

Так как большую часть времени системы находятся в режиме ожидания, то существуют проблемы постепенного образования шлаков в рабочих отверстиях распылителя. Диаметр одного отверстия составляет 1,2 мм. В этом случае распыляющий модуль теряет работоспособность.

Это существенный минус. Специалисты утверждают: необходимо, чтобы в конструкции были дополнительно закрывающие клапаны, которые смогут предотвратить шлакообразование. Также недостатком считается необходимость системы водоподготовки.

Преимущества использования тонкораспыленной технологии

Пожаротушение тонкораспыленной водой имеет еще одно значительное преимущество.
Это минимальный ущерб в процессе тушения. Чтобы удалить из помещения всю воду, достаточно небольшого проветривания. Таким образом, это очень эффективное и безопасное решение.

Также одно из достоинств – это экономия жидкости.
В процессе ликвидации пожаров обыкновенным способом размер одной капли может варьироваться от 1,5 до 2 мм. Показатели эффективного расхода составляют около 30%. Остальная же часть никак не борется с пламенем, а просто наносит ущерб помещению.

Эффективность тушения начинает расти, если уменьшается размер капли. Так, небольшой размер очень способствует повышению охлаждающей способности, повышает проникновение и площадь покрытия. При этом расход воды составляет всего лишь 1.5 литра на 1 кв. м.

Автономный модуль пожаротушения тонкораспыленной водой ТРВ гарант

Данные решения используют для помещений, класс опасности которых - от Ф1 до Ф5. Эти модули можно применять для ликвидации огня категорий А и B. Время на процесс тушения – не менее чем 5 секунд. За это время модуль выдаст около 30 литров воды. Среди преимущества данных модулей – срок службы до 10 лет с возможностью повторного использования.

Технологичная и экономная борьба с огнем

Итак, модульное пожаротушение тонкораспыленной водой – это эффективный и современный способ борьбы с пожарами.
Теперь можно забыть о том, что после пожарников помещение больше непригодно к жизни. Ущерб от тушения минимален.

Установки пожаротушения тонкораспылённой водой - это еще один вид установок использующих воду. Но в отличие от спринклерных и дренчерных установок в случае пожара частицы воды в несколько сот раз меньше, что уменьшает расход воды, скорость падения частиц, на горящую поверхность, создавая в объеме помещения влажную завесу. Установки пожаротушения тонкораспыленной водой бывают:

    модульные – используют в небольших помещениях;

    централизованные (агрегатные) – используют для защиты больших помещений.

Проектирование таких установок связано с некоторыми трудностями. В связи с тем, что необходимо разрабатывать технические условия для каждого защищаемого объекта и соответственно проходить защиту в МЧС.

Газовые установки пожаротушения – это одна из разновидностей устройств по борьбе с пожарами, основным принципом работы которой является «разбавление» кислорода в воздухе до концентраций при которых он (кислород) не может поддерживать горение. Огнетушащим веществом является газ.

Установки аэрозольного пожаротушения - основным огнетушащим веществом является тонкодисперсный порошок. Установка работает на основе ускорения окислислительно-восстановительных реакций горения. В результате работы образуется аэрозоль, обладающий хорошими огнетушащими свойствами.

6.Огнетушащие вещества и средства пожаротушения.

Огнетушащие вещества и средства, применяемые для тушения пожаров, делятся на первичные, стационарные и полустационарные.

Первичные средства пожаротушения предназначены для ликвидации небольших загораний до приведения в действие стационарных и полустационарных средств или прибытия пожарной команды. К ним относятся ручные и передвижные огнетушители, переносные огнетушащие установки с различными огнетушащими веществами , внутренние пожарные краны, ящики с песком, асбестовые покрывала, бочки с водой и ведра к ним, противопожарные щиты с набором инвентаря и др.

Основные огнетушащие вещества - вода в жидком и парообразном состоянии, химическая и воздушно-механическая пена, водные растворы солей, инертные газы, галои-дированные огаетушащие составы и сухие огаетушащие порошки.

Наиболее распространенным средством тушения пожаров является вода. Попадая в зону горения, вода нагревается и испаряется, отнимая большое количество теплоты от горящих веществ; 1 л воды при нагревании от 0 до100°С поглощает около 4*10s Дж теплоты, а при испарении - 22*10s Дж. При испарении воды образуется большое количество пара (из 1 л образуется больше 1700 л пара), который затрудняет доступ воздуха к очагу горения. Кроме того, сильная струя воды может сбить пламя, что облегчает тушение пожара.

Вода используется в виде компактных или распыленных струй, в тонкораспыленном состоянии (с размером капель 10 мкм) и со смачивателями. В виде компактных и распыленных струй из лафетных и ручных пожарных стволов вода применяется для тушения большинства твердых горючих веществ и материалов (круглых и пиленых материалов и изделий из древесины), тяжелых нефтепродуктов, для создания водяных завес и охлаждения объектов, находящихся вблизи очага пожара. Тонкораспыленной водой эффективно тушатся твердые вещества и материалы, горючие и даже легковоспламеняющиеся жидкости. При этом снижается расход воды, минимально увлажняются и портятся материалы, снижается температура в горящем помещении и осаждается дым.

Водяной пар применяют для тушения пожаров в помещениях объемом до 500 м3 и небольших пожаров на открытых площадках и установках. Пар увлажняет горящие предметы и сни­жает концентрацию кислорода.

Пена представляет собой массу пузырьков газа, заключенных в тонкие оболочки жидкости. Растекаясь по поверхности горящей жидкости, пена изолирует ее от пламени, вследствие чего прекращается поступление паров в зону горения. В связи с тем, что в пене содержится вода, происходит некоторое охлаждение поверхности жидкости.

Применяют два вида пены: химическую и воздушно- механическую. Химическую пену получают при взаимодействии щелочного и кислотного растворов в присутствии специальных веществ - пенообразователей, при этом образуется углекислый газ. Пузырьки газа обволакиваются водой с пенообразователем, в результате создается устойчивая пена, которая может долго оставаться на поверхности жидкости. Воздушно-механическая пена представляет собой смесь воздуха, воды и пенообразователя. Пену используют для тушения легковоспламеняющихся жидкостей.

Инертные газы , главным образом углекислота и азот, понижают концентрацию кислорода в очаге горения и тормозят интенсивность горения. Их целесообразно использовать в тех случаях, когда применение воды может вызвать взрыв, распространение горения, повреждение аппаратуры и приборов и уникальных ценностей (в музеях и др.). Они плохо тушат вещества, способные тлеть (дерево, бумагу), и не тушат волокнистые материалы (хлопок, ткани и др.).

Углекислота - незаменимое средство для быстрого тушения небольших очагов пожара, а также вследствие своей неэлектропроводности для тушения загоревшихся электродвигателей и других электротехнических установок.

Порошковые составы применяют для тушения легковоспламеняющихся жидкостей, сжиженных газов и др. Огнегасящее действие их основано на изоляции горящего материала от доступа кислорода воздуха или изоляции паров или газов от зоны горения. Отрицательным свойством таких порошков является то, что они не охлаждают горящие вещества и те могут повторно воспламеняться от нагретых конструкций. Применение порошковых составов ограничено ввиду их сравнительно небольшой огнетушащей эффективности, кроме того, при хранении они слеживаются.

Основные способы пожаротушения:

    охлаждение очага горения или горящего материала ниже определенных температур;

    изоляция очага горения от воздуха или снижение концентрации кислорода в воздухе путем разбавления негорючими газами;

    механический срыв пламени сильной струей воды или газа; торможение (ингибирование) скорости реакции окисления;

    создание условий огнепреграждения, при которых пламя распространяется через узкие каналы, сечение которых ниже установленного диаметра.

В статье описаны преимущества тушения пожаров тонкораспылённой водой высокого давления перед тра­диционными способами пожаротушения. Проведена сравнительная оценка эффективности тонкораспылённой воды высокою давления, стоимости оборудовании и монтажа, а также вторичного ущерба при разных способах пожаро­тушения. Приведены данные исследований и огневых испытаний, полученные авторами статьи при моделировании различных очагов возгорания.

Разработки технологий и систем пожаротушения тонкораспылённой водой вы­сокого давления (ТРВ ВД) как стационарных, так и мобильных насчитывают более 25 лет. Соответ­ствующие установки вызывают неизменный ин­терес на выставках, однако масштабы их практи­ческого применения весьма ограничены. Связано это, с точки зрения авторов статьи, с недостаточ­ной детализацией требований, указанных в норма­тивном документе (разделы 5.4, 5.5). В 2004 г. ООО НПО «ПРОСТОР» разработал и начал вы­пускать мобильные установки с использованием ТРВ ВД (рис. 1).

Созданные пожарные стволы и форсунки позволяли организовать заброс высокоскоростной тонкораспылённой воды в зону горения с расстояния 15-20 м. Однако очевидная и прогрессив­ная технология ТРВ ВД до сих пор тиражируется преимущественно в виде мобильных и передвиж­ных агрегатов.

Доктор технических наук, профессор И. М. Абдурагимов в своих первых лекциях фактически сформулировал идею ТРВ ВД, говоря, что в идеале для тушения 1 м² твёрдого вещества требуется 0.5 л воды. Нужно только решить главную зада­чу: как с помощью небольшого объёма воды эф­фективно воздействовать на очаг горения. Первые мобильные установки пожаротушения НПО «ПРО­СТОР», имеющие запас воды 50 или даже 120 л воды (см. рис. 1), являлись своего рода огнетуши­телями для ликвидации или подавления локальных пожаров мощностью до 5 МВт. Но по-прежнему нет поддержки технологии ТРВ ВД в сфере уст­ройства стационарных, автоматических установок пожаротушения (АУП) ТРВ ВД.

В 2016 г. завершена разработка современной отечественной стационарной системы пожароту­шения ТРВ ВД, создан целый комплекс оборудо­вания, включая фирменные форсунки, средства для надежного монтажа трубопроводов, разрабо­таны руководства по проектированию, монтажу и эксплуатации, сертифицированы все компонен­ты системы и созданы необходимые внутренние нормативные документы. Тем не менее остаются те же проблемы внедрения, так как нормативная база для проектирования и внедрения систем по­жаротушения ТРВ ВД по-прежнему отсутствует, поэтому во многих случаях принимается решение в пользу традиционных спринклерных АУП.

За рубежом технологии пожаротушения ТРВ ВД активно развиваются, чему способствуют стандарт и нормы NFРА , а также активное содействие их продвижению со стороны страхо­вых компаний. К сожалению, отечественные стра­ховые компании пока не заинтересованы в стимулировании продвижения технологии ТРВ ВД или содействии принятию необходимых нормативно-­правовых документов. Поэтому приходится возвращаться к вопросам эффективности ТРВ ВД, поиску эффективной системы пожаротушения, которая может сократить вторичный ущерб от пожара практически до нуля.

Традиционные системы пожаротушения низкого рабочего давления (до 1,25 МПа) – НД.

Системы пожаротушения с рабочим давлением выше 3,5 МПа (более 5 МПа) → БД.

Все устройства подачи огнетушащего вещества (оросители, распылители, форсунки) – распылители.

Сравнение систем пожаротушения НД и ВД

Согласно классификации, указанной в законе (ч. 1, ст. 45), существуют АУП агрегатного и мо­дульного типа с распылителями НД и ВД, которые отличаются, помимо рабочего давления, расходом воды. Но данным исследователей из Финляндии, разработанный ими распылитель ВД за 30 мин «выливает» 380 л воды (давление около 10 МПа), а традиционный распылитель НД за то же время 3600 л . Примерно такие же оценки у итальян­ских производителей АУП ТРВ ВД . Обычный спринклер по сравнению с их распылителем «вы­ливает» воды в 8 раз больше. Таким образом, на­прашивается первый вывод : расход воды в системах с НД примерно к 10 раз выше, чем в системах с ВД.

Для систем с НД используются трубы (под­водящие, магистральные и распределительные) гораздо большего диаметра, чем в системах ВД. Также важен и сам материал, из которого изготавливаются трубы. Если в системах НД можно ис­пользовать иногда даже не оцинкованную чёрную трубу (что, конечно, неправильно), то для систем ВД обязательно наличие только нержавеющей и, желательно, отечественной трубы. По приблизи­тельной оценке, учитывая, что примерно 2/3 всего распределительного трубопровода АУП (для систем ВД) составляют распределительные линии мало­го диаметра, погонный метр нержавеющей трубы почти в 2 раза дороже, хотя распределительный трубопровод из нержавеющей стали в 4 раза лег­че. Второй вывод : с учётом труб большого диаметра подводящие, магистральные и распределительные трубопроводы в системах пожаротушения НД по сравнению с линиями ВД более чем в 6 раз тяжелее, но при этом по стоимости примерно в 2 раза дешевле.

Третий вывод : для систем пожаротушения НД необходим значительно больший запас воды и, соответственно, более мощные нагнетательно-распределительные системы. Отличие может быть даже больше чем в 10 раз, так как всё зависит от нормативных требований по продолжительно­сти подачи воды системой .

В работе по материалам зарубежных публикаций были сделаны сравнительные оценки (рис. 2). Если принять за исходное условие усред­нённую спринклерную систему НД, то в ней при­мерно поровну распределены масса оборудования и необходимый запас воды.

Общая масса всей системы пожаротушения ВД с рабочим давлением 10 - 15 МПа составляет только 15 % от массы системы пожаротушения НД. В самой установке пожаротушения ВД соотноше­ние массы воды, необходимой для пожаротушения, к массе оборудования, примерно равно 1:10.

Если сравнивать обе установки по массе оборудования и трубопроводов, то соотноше­ние будет примерно 4:1, а с учётом запаса воды – примерно 7:1 не в пользу систем НД. Четвертый вывод : объёмы и масса монтируемого оборудо­вания и, соответственно, затраты на монтаж си­стем пожаротушения НД в разы превышают за­траты при монтаже систем пожаротушения ВД. При этом более компактные системы пожаро­тушения ВД значительно проще в обслуживании и эксплуатации.


Оценки и сравнения, сделанные на основе рассмотрения конструктивных, архитектурно-планировочных и компоновочных решений ЛУП, не будут полными без сравнения основных элементов этой системы – распылителей, задача которых распределить истекающие потоки воды на мак­симально возможную площадь. В распылителях НД эту функцию выполняют дополнительные конструктивные элементы, устанавливаемые на выходе струи из распылителя (рис. 3).

Распылители ВД, благодаря появлению но­вых технологий и материалов, изобретены сравни­тельно недавно. По конструкции это либо несколько струйных сопел, расположенных под углом (рис. 4, а), либо специальные вихревые форсунки или распы­лители (рис. 4, б).

Сравнительная оценка размеров частиц воды в рас­пылителях НД и ВД

Главное отличие распылителей НД и ВД в размерах частиц воды, которые формируются на выходе из распылителя (см. рис. 3, 4). В распылителях ВД при давлении от 7-12 МПа это, прежде всего, мелкодисперсный поток водя­ных капель размером менее 150 мкм, фактически - от 50 до 100 мкм. Разработчики систем пожаро­тушения НД оперируют средним размером капель 2 мм, сравнивая их с каплями 0,05 мм в систе­мах ВД .

Если теоретически распылить 1 л воды на равномерные частицы размером 2 и 0,05 мм, то получится следующее количество капель: 240 000 и 15 300 000 000. Так как испарение воды проис­ходит с поверхности, то интенсивность испарения при пожаротушении больше зависит не от количества капель, а от их суммарной свободной поверх­ности. Суммарная боковая поверхность для частиц воды НД и ВД равна 3 и 120 м², соответственно, т. е. возрастает в 40 раз. Таким образом, огромное количество капель и увеличенная в десятки раз поверхность испарения в системах пожаротуше­ния ТРВ ВД значительно повышает скорость по­глощения тепла в зоне горения и интенсивность вытеснения из неё кислорода, а также активно экранирует тепловое излучение

Скорость истечения воды из распылителя ВД

Данный параметр для подобного устройства весь­ма важен: чем выше давление в системе, тем выше скорость истечения. При скорости истечения, превышающей 100-150 м/с, следует учитывать до­полнительный мощный аэродинамический фактор дробления водяного потока, чего нет при гравитационном истечении в случае распылителей НД, т. е. в итоге получается быстролетящий туман. Мел­кие частицы воды, обладающие хорошей проницаемостью, способствуют распределению ТРВ по всему пространству, даже «затекая» за препятствия, напоминая по характеру распределения в пространстве газ (квазигаз). Такая способность летящего тумана больше соответствует объёмному способу тушения пожара. В совокупности все перечис­ленные свойства и особенности систем пожаро­тушения ТРВ ВД позволяют говорить о том, что они способны составить серьёзную конкуренцию не только традиционным системам распыления воды НД, но в ряде случаев и газовым системам пожаротушения.

Преимущества от использования водяного тумана при тушении пожара

  • эффективно осуществляет дымоподавление (дымоосаждение);
  • мелкодисперсная вода экранирует тепловое излу­чение и может использоваться для защиты пожарного, а также материальных ценностей на пожаре;
  • распылённая вода более равномерно охлаждает сильно нагретые металлические поверхности несущих конструкций, что исключает их локальную деформацию, потерю устойчиво­сти и разрушение;
  • низкая электрическая проводимость водяного тума­на делает возможным его применение в качестве эффективного средства пожаротушения на электроустановках, находящихся под напряжением.

Особенно эффективным является применение систем пожаротушения ТРВ ВД на ранних стадиях обнаружения пожара, в замкнутых поме­щениях, а также на объектах, не допускающих вто­ричного ущерба от пожара (избыточный пролив воды). В соответствии с рекомендациями международного и европейского стандартов , ис­следованиями зарубежных коллег , а также из накопленного опыта наиболее эффективно ис­пользовать ТРВ ВД для тушения пожаров класса A, В и E в следующих местах:

  • в кабельных сооружениях электростанций (АЭС) и подстанций, промышленных и обще­ственных зданий (тоннели, каналы, подвалы, шахты, этажи, двойные полы, галереи, камеры, используе­мые для прокладки электрокабелей);
  • в городских кабельных коллекторах и тоннелях;
  • в электроустановках, находящихся под на­пряжением до 35000 В;
  • в помещениях для хранения горючих ма­териалов или негорючих материалов в горючей упаковке;
  • в наземных и подземных помещениях и сооружениях метрополитенов и подземных ско­ростных трамваях;
  • в автотранспортных тоннелях;
  • в помещениях складского назначения;
  • в помещениях хранилищ библиотек и архивов.

Авторы статьи признают, что для многих объектов жилого и общественного назначения вполне достаточно использовать традиционные системы пожаротушения НД и проблема их не­достаточной эффективности (не выше 50-60 %) относится, скорее всего, к упущениям в проекти­ровании, монтаже и особенно в обслуживании. Системы пожаротушения ИД ориентированы на лик­видацию пожара в помещении (здании) до возникновения критических значений опасных факторов пожара . При этом следует отметить, что в соот­ветствии со статьей 89 закона расчёт эвакуационных путей и выходов людей производится без учёта применяемых средств пожаротушения, что занижает значимость и эффективность АУП. Следует отметить, что традиционные спринклер­ные ЛУП неэффективны при ликвидации пожара до наступления предела огнестойкости строитель­ных конструкций, до причинения максимально допустимого ущерба защищаемому имуществу и до наступления опасности разрушения технологи­ческих установок . ТРВ ВД лучше использовать в качестве средства объёмного или локально объёмного пожаротушения, что пока не вписыва­ется в способы, указанные в нормативном доку­менте , но такие системы (ТРВ ВД) позволяют обеспечить достижение тех результатов, которые не могут обеспечить спринклерные автоматиче­ские установки пожаротушения .

Системы пожаротушения НД сохраняют ве­дущую роль в системах противопожарной зашиты из-за развитой нормативной правовой базы, отра­ботанных проектных и технологических решений, сформировавшегося положительного отношения страховых компаний.

Системы пожаротушения тонкораспылённой водой высокого давления после создания высоко­эффективных распылителей и форсунок ТРВ ВД на основе новых технологий, инструментария и материалов, экспериментально показывают свои существенно более высокие потенциальные воз­можности и эффективность. Однако низкие темпы формирования нормативной и расчётно-аналити­ческой базы для их применения являются серьёз­ным сдерживающим фактором для перехода на их широкое использование.

ЛИТЕРАТУРА

1. СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автома­тические. Нормы и правила проектирования. - М.: МЧС России, ВНИИПО МЧС России. 2009. - 114 с.

2. Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасно­сти». - М.: Проспект. 2014. - 111 с.

3. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений». - М., 2009. - 20 с.

4. ONR CEN/TS 14972:2011. Ortsfeste Brandbekampfungsanlagen – Feinspruh Loschanlagen // Planung und Einbau; Deutsche Fassung, Belgium, Brussel, Europaisches Komitee fur Normung, 2011, S. 9.

5. NFPA 750. Standart on Water Mist Fire Protection Systems. – Las Vegas, An International Codes and Standarts Organization, National Fire Protection Association, 2015, 88 p.

6. Гергель В. И., Цариченко С. Г., Поляков Д. В. Пожаро­тушение тонкораспылённой водой установками высокого дав­ления оперативного применения // Пожарная безопасность. - 2006. - № 2. - С. 125-132.

7. Противопожарная защита для офисных зданий [Элек­тронный ресурс] // Каталог фирмы MARIOFF CORPORATION. Режим доступа: http://www.marioff.com/fire-protection/fire-protection-for-buildings/fire-protection-for-office-buil...

8. Модуль пожаротушении тонкораспылённой водой ЕI-МISТ [Электронный ресурс] // Официальный сайт компа­нии ООО «Пламя Е1» (Пожарная безопасность и оборудова­ние) [сайт]. Режим доступа: http://www.plamya-ei.ru/produkcija/ei-mist (Дата обращения 24.05.2017 г.).

9. Пахомов В. П. Особенности применения АУПТ тонкораспылённой воды // Пожарное дело в строительстве. - 2009. - № 5. - С. 59-65.

10. НПБ 88-01. Установки пожаротушения и сигнализа­ции. Нормы и правила проектирования. - М.: МВД РФ, Государ­ственная противопожарная служба, 2002. - 119 с.

ГОСТ Р 53288-2009

Группа Г88

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Установки водяного и пенного пожаротушения автоматические

МОДУЛЬНЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ ТОНКОРАСПЫЛЕННОЙ ВОДОЙ АВТОМАТИЧЕСКИЕ

Общие технические требования. Методы испытаний

Automatic water and foam extinguishers systems. Automatic fire water mist spray extinguishers systems. Modules. General technical requirements. Test methods


ОКС 13.220.10
ОКП 48 5487

Дата введения 2010-01-01
с правом досрочного применения*
________________
* См. ярлык "Примечания"

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН ФГУ ВНИИПО МЧС России

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 274 "Пожарная безопасность"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 февраля 2009 г. N 63-ст

4 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на модульные установки пожаротушения тонкораспыленной водой (МУПТВ) или иными жидкими огнетушащими веществами (ОТВ), предназначенные для тушения пожаров и применяемые на территории Российской Федерации.

Настоящий стандарт не распространяется на МУПТВ, предназначенные для защиты транспортных средств, а также сооружений, проектируемых по специальным нормам.

Настоящий стандарт устанавливает типы, общие технические требования и методы испытаний МУПТВ.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51043-2002 Установки водяного и пенного пожаротушения автоматические. Оросители. Общие технические требования. Методы испытаний

ГОСТ Р 51105-97 Топлива для двигателей внутреннего сгорания Неэтилированный бензин. Технические условия

ГОСТ 9.014-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.104-79 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы условий эксплуатации

ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 9.302-88 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 9.308-85 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний

ГОСТ 9.311-87 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Метод оценки коррозионных поражений

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.2.037-78 Система стандартов безопасности труда. Техника пожарная. Требования безопасности

ГОСТ 12.2.047-86 Система стандартов безопасности труда. Пожарная техника. Термины и определения

ГОСТ 12.4.026-76 * Система стандартов безопасности труда. Цвета сигнальные и знаки безопасности
______________
ГОСТ Р 12.4.026-2001

ГОСТ 15.201-2000 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство

ГОСТ 356-80 Арматура и детали трубопроводов. Давления условные, пробные и рабочие. Ряды

ГОСТ 2405-88 Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия

ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8486-86 . Пиломатериалы хвойных пород. Технические условия

ГОСТ 8510-86 Уголки стальные горячекатаные неравнополочные. Сортамент

ГОСТ 9569-79 * Бумага парафинированная. Технические условия
______________
* На территории Российской Федерации действует ГОСТ 9569-2006 , здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 19433-88 Грузы опасные. Классификация и маркировка

ГОСТ 21130-75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 23852-79 Покрытия лакокрасочные. Общие требования к выбору по декоративным свойствам

ГОСТ 25828-83 Гептан нормальный эталонный. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 12.2.047 , а также следующие термины с соответствующими определениями:

3.1 водопитатель МУПТВ: Устройство, обеспечивающее работу установки с расчетным расходом и давлением воды и/или водного раствора, указанными в технической документации (ТД), в течение установленного времени.

3.2 запорно-пусковое устройство; ЗПУ: Запорное устройство, устанавливаемое на сосуде (баллоне) и обеспечивающее выпуск из него огнетушащего вещества.

3.3 инерционность МУПТВ: Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону.

3.4 малоинерционная МУПТВ: Установка с инерционностью не более 3 с.

3.5 модуль: Устройство, в корпусе которого совмещены функции хранения и подачи ОТВ при воздействии пускового импульса на привод модуля.

3.6 модульная установка пожаротушения тонкораспыленной водой; МУПТВ: Установка, состоящая из одного или нескольких модулей, объединенных единой системой обнаружения пожара и приведения их в действие, способных самостоятельно выполнять функцию пожаротушения и размещенных в защищаемом помещении или рядом с ним.

3.7 МУПТВ кратковременного действия: Установка со временем подачи ОТВ от 1 до 60 с.

3.8 МУПТВ непрерывного действия: Установка с непрерывной подачей ОТВ в течение времени действия, определенного в ТД.

3.9 МУПТВ циклического действия: Установка, подающая ОТВ по многократному циклу подача-пауза.

3.10 ороситель: Устройство, предназначенное для тушения, локализации или блокирования пожара путем распыливания воды и/или водных растворов.

3.11 огнетушащая способность: Способность МУПТВ обеспечивать тушение модельных очагов пожара определенных классов и рангов.

3.12 продолжительность действия: Время с момента начала выхода ТРВ из оросителя до момента окончания подачи.

3.13 рабочее давление : Давление вытесняющего газа в сосуде с ОТВ, возникающее при нормальном протекании рабочего процесса.

3.14 расход огнетушащего вещества: Объем воды, подаваемой МУПТВ в единицу времени.

3.15 среднеинерционная МУПТВ: Установка с инерционностью от 3 до 180 с.

3.16 тонкораспыленный поток огнетушащего вещества: Капельный поток огнетушащего вещества со среднеарифметическим диаметром капель не более 150 мкм.

3.17 установка водяного комбинированного пожаротушения: Установка, в которой в качестве огнетушащего вещества используется вода или вода с добавками в комбинации с различными огнетушащими газовыми составами.

3.18 установка поверхностного пожаротушения тонкораспыленной водой: Установка, обеспечивающая тушение горящей поверхности защищаемого помещения (сооружения).

4 Классификация

Общая классификация установок пожаротушения тонкораспыленной водой приведена в таблице 1.


Таблица 1 - Общая классификация установок пожаротушения тонкораспыленной водой

Классификационный признак

Характеристика

Вид огнетушащего вещества

Вода. Вода с добавками. Газоводяная смесь. Жидкие ОТВ

Инерционность срабатывания

Малоинерционные. Среднеинерционные

Продолжительность действия

Кратковременное. Продолжительное

Тип действия

Непрерывное. Циклическое

Вид водопитателя

Сжатый газ. Сжиженный газ. Газогенератор. Насос. Комбинированный


Обозначение МУПТВ должно иметь следующую структуру:

МУПТВ - XXX - X - XX - ТД,
(1) (2) (3) (4) (5)

где 1 - наименование изделия;

2 - объем огнетушащего вещества, заправляемого в МУПТВ, дм;

3 - тип МУПТВ по водопитателю (сжатый газ (сжиженный газ) - Г, газогенератор - ГЗ, комбинированный - К);

4 - вид огнетушащего вещества (вода - В, вода с добавками - ВД, жидкие ОТВ - Ж, газоводяная смесь - ГВ, газожидкостная смесь - ГЖ);

5 - обозначение технической документации, в соответствии с которой изготовлена установка, или фирма-изготовитель.

Пример условного обозначения:

МУПТВ - 250 - Г - ГВ - ТУ... - модульная установка пожаротушения тонкораспыленной водой с объемом ОТВ 250 дм, тип по водопитателю - сжатый газ (сжиженный газ), ОТВ - газоводяная смесь, изготовленная в соответствии с ТУ.

5 Общие технические требования

5.1 МУПТВ должны соответствовать требованиям , ГОСТ 12.2.037 , настоящего стандарта и ТД, утвержденной в установленном порядке.

5.2 МУПТВ закачного типа должны иметь манометр или индикатор давления с рабочим диапазоном, выбранным с учетом соотношения температура - давление. Нулевое значение, номинальное значение (или минимальное и максимальное) и значение рабочего давления, установленные в ТД на МУПТВ, должны быть указаны на шкале индикатора давления отметками с цифрами. Участок шкалы в диапазоне рабочего давления должен быть окрашен в зеленый цвет, участок в диапазоне пониженного давления - в красный цвет, участок в диапазоне повышенного давления - в красный или иной (кроме зеленого) цвет.

Участки шкалы манометра можно выделять также путем нанесения линии, полосы или сектора различного цвета.

Допускаемая основная погрешность манометра во всем диапазоне шкалы должна соответствовать требованию ГОСТ 2405 .

Максимальная допускаемая основная погрешность индикатора давления не должна превышать 4%.

Конструкция МУПТВ должна обеспечивать возможность удаления измерительных устройств для их поверки.

5.3 МУПТВ должна быть оборудована:

- устройством слива, при необходимости, ОТВ из емкостей и трубопроводов;

- устройством контроля уровня или объема ОТВ в емкостях для их хранения;

- штуцером для присоединения манометра или индикатора давления (для МУПТВ закачного типа);

- предохранительным устройством.

5.4 Устройства пуска установки должны быть защищены от случайных срабатываний.

5.5 Запорные устройства (краны) должны быть снабжены указателями (стрелками) направления потока жидкости и/или надписями "ОТКР" и "ЗАКР".

5.6 Оросители, используемые в МУПТВ, должны быть стойкими к коррозионному и тепловому воздействию и выдерживать в течение не менее 10 мин нагрев при температуре 250 °С. Оросители, изготовленные из коррозионно-нестойких материалов, должны иметь защитные и защитно-декоративные покрытия в соответствии с ГОСТ 9.301 , ГОСТ 9.303 .

5.7 МУПТВ должны быть работоспособны в диапазоне температур окружающей среды, установленной изготовителем и указанной в ТД.

5.8 Сосуды, работающие под давлением, должны быть снабжены устройствами, предохраняющими от превышения давления, срабатывающими в диапазоне давлений

где - максимальное допустимое значение рабочего давления, создаваемое при максимальной температуре эксплуатации устройства, устанавливается изготовителем и указывается в технической документации на устройство;

- давление срабатывания предохранительного устройства;

- давление пробное (ГОСТ 356).

Не допускается использовать в качестве предохранительного устройства запорно-пусковую систему.

5.9 Сосуды, работающие под давлением, должны сохранять прочность при пробном испытательном давлении в соответствии с требованиями .

5.10 МУПТВ должны быть герметичными. Для МУПТВ закачного типа потери давления в баллоне модуля (в баллоне с газом-вытеснителем) не должны превышать 5% от начального в течение года.

5.11 Усилие приведения в действие установки при ручном пуске:

- одним пальцем руки - не более 100 Н;

- кистью руки - не более 200 Н.

5.12 Параметры сигналов автоматического пуска должны соответствовать требованиям ТД на соответствующие изделия.

5.13 Инерционность срабатывания МУПТВ при автоматическом пуске не должна превышать величину, указанную в ТД на изделие.

5.14 Ресурс срабатываний МУПТВ должен быть не менее 5.

5.15 Значения расхода воды и газа через ороситель (оросители) не должны отличаться от установленных в ТД.

5.16 Продолжительность действия установки не должна отличаться от установленной в ТД.

5.17 МУПТВ должны обеспечивать тушение модельных очагов пожара классов А и/или В на всей площади, заявляемой в ТД.

5.18 МУПТВ должны быть стойкими к наружному и внутреннему коррозионному воздействию в течение всего срока службы в соответствии с ТД. Металлические детали из коррозионно-нестойких материалов должны иметь защитные и защитно-декоративные покрытия в соответствии с требованиями ГОСТ 9.301 и ГОСТ 9.303 .

Лакокрасочные покрытия должны быть выполнены в соответствии с требованиями ГОСТ 9.032 , ГОСТ 9.104 , ГОСТ 23852 и должны сохранять свои защитные и декоративные свойства в течение всего назначенного срока службы.

Наружная поверхность корпуса МУПТВ должна быть окрашена в красный цвет в соответствии с ГОСТ 12.4.026 . Допускается, по требованию заказчика, окраска в тон интерьера.

5.19 При использовании в качестве ОТВ водных растворов, склонных к расслоению при длительном хранении, в МУПТВ должны быть предусмотрены устройства, обеспечивающие их перемешивание.

5.20 В МУПТВ для вытеснения ОТВ допускается использование газогенерирующих элементов. Конструкция газогенерирующего элемента должна быть герметичной и исключать возможность попадания в ОТВ каких-либо его фрагментов или шлаков.

5.21 Канал выпуска МУПТВ, как правило, оборудуется до входа в самое узкое проходное сечение канала фильтрующими элементами, размер ячейки которых должен быть меньше минимального сечения канала истечения. Общая площадь проходного сечения фильтра должна более чем в пять раз превышать площадь минимального сечения канала истечения.

6 Требования безопасности и охраны окружающей среды

6.1 К работе с установкой должны допускаться лица, прошедшие специальный инструктаж и обучение безопасным методам труда, проверку знаний правил безопасности и инструкций в соответствии с занимаемой должностью применительно к выполняемой работе согласно ГОСТ 12.0.004 .

6.2 Электрооборудование установок должно быть заземлено. Знак и место заземления - по ГОСТ 21130 .

6.3 При проведении огневых испытаний операторы должны иметь средства защиты органов дыхания, глаз, кожного покрова. Необходимо наличие первичных средств пожаротушения (огнетушители, песок, вода и т.д.). Огневые камеры должны быть изготовлены из негорючих материалов и оборудованы вентиляцией.

6.4 Запрещается:

- эксплуатировать МУПТВ с манометром или индикатором давления, имеющими механические дефекты;

- выполнять любые ремонтные работы при наличии давления в корпусе МУПТВ.

6.5 При эксплуатации, техническом обслуживании, испытаниях, ремонте должны обеспечиваться требования охраны окружающей среды, изложенные в ТД на МУПТВ.

6.6 Добавки к воде (поверхностно-активные вещества) должны иметь гигиеническое заключение.

6.7 Около места проведения испытаний или ремонтных работ МУПТВ должны быть установлены предупреждающие знаки, например "Осторожно! Прочие опасности" и поясняющая надпись "Идут испытания" - по ГОСТ 12.4.026 , а также вывешены инструкция и правила безопасности.

7 Маркировка

7.1 Маркировка МУПТВ должна быть выполнена на русском языке и содержать следующие данные:

- наименование или товарный знак предприятия-изготовителя;

- условное обозначение МУПТВ;

- обозначение нормативного или технического документа, которому соответствует МУПТВ (технические условия, стандарт и т.д.);

- классы очагов пожаров (в виде пиктограмм), которые могут быть потушены данным МУПТВ;

- масса незаправленной МУПТВ;

- вид и объем (масса) ОТВ, находящегося в МУПТВ (при поставке с ОТВ);

- рабочее давление в баллонах при температуре (20±2) °С;

- диапазон температур эксплуатации;

- предостерегающие надписи, например: "Предохранять от воздействия осадков, прямых солнечных лучей и нагревательных приборов";

- рекомендации по периодическим проверкам с указанием частоты проверки;

- заводской номер;

- месяц и год изготовления.

7.2 Маркировку следует выполнять любым способом, обеспечивающим четкость и сохранность в течение всего срока службы МУПТВ.

7.3 На баллоне модуля должны быть указаны его паспортные данные в соответствии с ТД на него.

8 Правила приемки

8.1 Для контроля соответствия МУПТВ требованиям настоящего стандарта, "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением", технической документации проводят приемочные, квалификационные, приемо-сдаточные, периодические, типовые испытания и испытания на надежность.

8.2 Приемочные и квалификационные испытания МУПТВ проводят в соответствии с ГОСТ 15.201 по программе, разработанной изготовителем и разработчиком.

8.3 Приемо-сдаточные испытания проводят в целях принятия решения о пригодности МУПТВ к поставке потребителю. Испытания проводятся службой технического контроля (контроля качества) предприятия-изготовителя по программе, разработанной изготовителем и разработчиком.

8.4 Периодические испытания проводят не реже одного раза в три года на образцах, прошедших приемо-сдаточные испытания, в целях контроля стабильности технологического процесса и качества продукции.

8.5 Типовые испытания проводят при внесении изменений в конструкцию или технологию изготовления (материал и т.п.), способных повлиять на основные параметры, обеспечивающие работоспособность МУПТВ. Программу испытаний составляют с учетом этих изменений и согласуют с разработчиком.

8.6 Испытания на надежность проводят не реже одного раза в три года.

8.7 Объем, виды и порядок испытаний представлены в таблице 2.


Таблица 2 - Объем приемо-сдаточных и периодических испытаний

Показатели

Пункт (раздел) настоящего стандарта

Виды испытаний

Приемо-
сдаточные

Перио-
дические

Наличие маркировки, упаковки и комплектации

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2009

В статье описаны преимущества тушения пожаров тонкораспылённой водой высокого давления перед тра­диционными способами пожаротушения. Проведена сравнительная оценка эффективности тонкораспылённой воды высокою давления, стоимости оборудовании и монтажа, а также вторичного ущерба при разных способах пожаро­тушения. Приведены данные исследований и огневых испытаний, полученные авторами статьи при моделировании различных очагов возгорания.

Разработки технологий и систем пожаротушения тонкораспылённой водой вы­сокого давления (ТРВ ВД) как стационарных, так и мобильных насчитывают более 25 лет. Соответ­ствующие установки вызывают неизменный ин­терес на выставках, однако масштабы их практи­ческого применения весьма ограничены. Связано это, с точки зрения авторов статьи, с недостаточ­ной детализацией требований, указанных в норма­тивном документе (разделы 5.4, 5.5). В 2004 г. ООО НПО «ПРОСТОР» разработал и начал вы­пускать мобильные установки с использованием ТРВ ВД (рис. 1).

Созданные пожарные стволы и форсунки позволяли организовать заброс высокоскоростной тонкораспылённой воды в зону горения с расстояния 15-20 м. Однако очевидная и прогрессив­ная технология ТРВ ВД до сих пор тиражируется преимущественно в виде мобильных и передвиж­ных агрегатов.

Доктор технических наук, профессор И. М. Абдурагимов в своих первых лекциях фактически сформулировал идею ТРВ ВД, говоря, что в идеале для тушения 1 м² твёрдого вещества требуется 0.5 л воды. Нужно только решить главную зада­чу: как с помощью небольшого объёма воды эф­фективно воздействовать на очаг горения. Первые мобильные установки пожаротушения НПО «ПРО­СТОР», имеющие запас воды 50 или даже 120 л воды (см. рис. 1), являлись своего рода огнетуши­телями для ликвидации или подавления локальных пожаров мощностью до 5 МВт. Но по-прежнему нет поддержки технологии ТРВ ВД в сфере уст­ройства стационарных, автоматических установок пожаротушения (АУП) ТРВ ВД.

В 2016 г. завершена разработка современной отечественной стационарной системы пожароту­шения ТРВ ВД, создан целый комплекс оборудо­вания, включая фирменные форсунки, средства для надежного монтажа трубопроводов, разрабо­таны руководства по проектированию, монтажу и эксплуатации, сертифицированы все компонен­ты системы и созданы необходимые внутренние нормативные документы. Тем не менее остаются те же проблемы внедрения, так как нормативная база для проектирования и внедрения систем по­жаротушения ТРВ ВД по-прежнему отсутствует, поэтому во многих случаях принимается решение в пользу традиционных спринклерных АУП.

За рубежом технологии пожаротушения ТРВ ВД активно развиваются, чему способствуют стандарт и нормы NFРА , а также активное содействие их продвижению со стороны страхо­вых компаний. К сожалению, отечественные стра­ховые компании пока не заинтересованы в стимулировании продвижения технологии ТРВ ВД или содействии принятию необходимых нормативно-­правовых документов. Поэтому приходится возвращаться к вопросам эффективности ТРВ ВД, поиску эффективной системы пожаротушения, которая может сократить вторичный ущерб от пожара практически до нуля.

Традиционные системы пожаротушения низкого рабочего давления (до 1,25 МПа) – НД.

Системы пожаротушения с рабочим давлением выше 3,5 МПа (более 5 МПа) → БД.

Все устройства подачи огнетушащего вещества (оросители, распылители, форсунки) – распылители.

Сравнение систем пожаротушения НД и ВД

Согласно классификации, указанной в законе (ч. 1, ст. 45), существуют АУП агрегатного и мо­дульного типа с распылителями НД и ВД, которые отличаются, помимо рабочего давления, расходом воды. Но данным исследователей из Финляндии, разработанный ими распылитель ВД за 30 мин «выливает» 380 л воды (давление около 10 МПа), а традиционный распылитель НД за то же время 3600 л . Примерно такие же оценки у итальян­ских производителей АУП ТРВ ВД . Обычный спринклер по сравнению с их распылителем «вы­ливает» воды в 8 раз больше. Таким образом, на­прашивается первый вывод : расход воды в системах с НД примерно к 10 раз выше, чем в системах с ВД.

Для систем с НД используются трубы (под­водящие, магистральные и распределительные) гораздо большего диаметра, чем в системах ВД. Также важен и сам материал, из которого изготавливаются трубы. Если в системах НД можно ис­пользовать иногда даже не оцинкованную чёрную трубу (что, конечно, неправильно), то для систем ВД обязательно наличие только нержавеющей и, желательно, отечественной трубы. По приблизи­тельной оценке, учитывая, что примерно 2/3 всего распределительного трубопровода АУП (для систем ВД) составляют распределительные линии мало­го диаметра, погонный метр нержавеющей трубы почти в 2 раза дороже, хотя распределительный трубопровод из нержавеющей стали в 4 раза лег­че. Второй вывод : с учётом труб большого диаметра подводящие, магистральные и распределительные трубопроводы в системах пожаротушения НД по сравнению с линиями ВД более чем в 6 раз тяжелее, но при этом по стоимости примерно в 2 раза дешевле.

Третий вывод : для систем пожаротушения НД необходим значительно больший запас воды и, соответственно, более мощные нагнетательно-распределительные системы. Отличие может быть даже больше чем в 10 раз, так как всё зависит от нормативных требований по продолжительно­сти подачи воды системой .

В работе по материалам зарубежных публикаций были сделаны сравнительные оценки (рис. 2). Если принять за исходное условие усред­нённую спринклерную систему НД, то в ней при­мерно поровну распределены масса оборудования и необходимый запас воды.

Общая масса всей системы пожаротушения ВД с рабочим давлением 10 - 15 МПа составляет только 15 % от массы системы пожаротушения НД. В самой установке пожаротушения ВД соотноше­ние массы воды, необходимой для пожаротушения, к массе оборудования, примерно равно 1:10.

Если сравнивать обе установки по массе оборудования и трубопроводов, то соотноше­ние будет примерно 4:1, а с учётом запаса воды – примерно 7:1 не в пользу систем НД. Четвертый вывод : объёмы и масса монтируемого оборудо­вания и, соответственно, затраты на монтаж си­стем пожаротушения НД в разы превышают за­траты при монтаже систем пожаротушения ВД. При этом более компактные системы пожаро­тушения ВД значительно проще в обслуживании и эксплуатации.


Оценки и сравнения, сделанные на основе рассмотрения конструктивных, архитектурно-планировочных и компоновочных решений ЛУП, не будут полными без сравнения основных элементов этой системы – распылителей, задача которых распределить истекающие потоки воды на мак­симально возможную площадь. В распылителях НД эту функцию выполняют дополнительные конструктивные элементы, устанавливаемые на выходе струи из распылителя (рис. 3).

Распылители ВД, благодаря появлению но­вых технологий и материалов, изобретены сравни­тельно недавно. По конструкции это либо несколько струйных сопел, расположенных под углом (рис. 4, а), либо специальные вихревые форсунки или распы­лители (рис. 4, б).

Сравнительная оценка размеров частиц воды в рас­пылителях НД и ВД

Главное отличие распылителей НД и ВД в размерах частиц воды, которые формируются на выходе из распылителя (см. рис. 3, 4). В распылителях ВД при давлении от 7-12 МПа это, прежде всего, мелкодисперсный поток водя­ных капель размером менее 150 мкм, фактически - от 50 до 100 мкм. Разработчики систем пожаро­тушения НД оперируют средним размером капель 2 мм, сравнивая их с каплями 0,05 мм в систе­мах ВД .

Если теоретически распылить 1 л воды на равномерные частицы размером 2 и 0,05 мм, то получится следующее количество капель: 240 000 и 15 300 000 000. Так как испарение воды проис­ходит с поверхности, то интенсивность испарения при пожаротушении больше зависит не от количества капель, а от их суммарной свободной поверх­ности. Суммарная боковая поверхность для частиц воды НД и ВД равна 3 и 120 м², соответственно, т. е. возрастает в 40 раз. Таким образом, огромное количество капель и увеличенная в десятки раз поверхность испарения в системах пожаротуше­ния ТРВ ВД значительно повышает скорость по­глощения тепла в зоне горения и интенсивность вытеснения из неё кислорода, а также активно экранирует тепловое излучение

Скорость истечения воды из распылителя ВД

Данный параметр для подобного устройства весь­ма важен: чем выше давление в системе, тем выше скорость истечения. При скорости истечения, превышающей 100-150 м/с, следует учитывать до­полнительный мощный аэродинамический фактор дробления водяного потока, чего нет при гравитационном истечении в случае распылителей НД, т. е. в итоге получается быстролетящий туман. Мел­кие частицы воды, обладающие хорошей проницаемостью, способствуют распределению ТРВ по всему пространству, даже «затекая» за препятствия, напоминая по характеру распределения в пространстве газ (квазигаз). Такая способность летящего тумана больше соответствует объёмному способу тушения пожара. В совокупности все перечис­ленные свойства и особенности систем пожаро­тушения ТРВ ВД позволяют говорить о том, что они способны составить серьёзную конкуренцию не только традиционным системам распыления воды НД, но в ряде случаев и газовым системам пожаротушения.

Преимущества от использования водяного тумана при тушении пожара

  • эффективно осуществляет дымоподавление (дымоосаждение);
  • мелкодисперсная вода экранирует тепловое излу­чение и может использоваться для защиты пожарного, а также материальных ценностей на пожаре;
  • распылённая вода более равномерно охлаждает сильно нагретые металлические поверхности несущих конструкций, что исключает их локальную деформацию, потерю устойчиво­сти и разрушение;
  • низкая электрическая проводимость водяного тума­на делает возможным его применение в качестве эффективного средства пожаротушения на электроустановках, находящихся под напряжением.

Особенно эффективным является применение систем пожаротушения ТРВ ВД на ранних стадиях обнаружения пожара, в замкнутых поме­щениях, а также на объектах, не допускающих вто­ричного ущерба от пожара (избыточный пролив воды). В соответствии с рекомендациями международного и европейского стандартов , ис­следованиями зарубежных коллег , а также из накопленного опыта наиболее эффективно ис­пользовать ТРВ ВД для тушения пожаров класса A, В и E в следующих местах:

  • в кабельных сооружениях электростанций (АЭС) и подстанций, промышленных и обще­ственных зданий (тоннели, каналы, подвалы, шахты, этажи, двойные полы, галереи, камеры, используе­мые для прокладки электрокабелей);
  • в городских кабельных коллекторах и тоннелях;
  • в электроустановках, находящихся под на­пряжением до 35000 В;
  • в помещениях для хранения горючих ма­териалов или негорючих материалов в горючей упаковке;
  • в наземных и подземных помещениях и сооружениях метрополитенов и подземных ско­ростных трамваях;
  • в автотранспортных тоннелях;
  • в помещениях складского назначения;
  • в помещениях хранилищ библиотек и архивов.

Авторы статьи признают, что для многих объектов жилого и общественного назначения вполне достаточно использовать традиционные системы пожаротушения НД и проблема их не­достаточной эффективности (не выше 50-60 %) относится, скорее всего, к упущениям в проекти­ровании, монтаже и особенно в обслуживании. Системы пожаротушения ИД ориентированы на лик­видацию пожара в помещении (здании) до возникновения критических значений опасных факторов пожара . При этом следует отметить, что в соот­ветствии со статьей 89 закона расчёт эвакуационных путей и выходов людей производится без учёта применяемых средств пожаротушения, что занижает значимость и эффективность АУП. Следует отметить, что традиционные спринклер­ные ЛУП неэффективны при ликвидации пожара до наступления предела огнестойкости строитель­ных конструкций, до причинения максимально допустимого ущерба защищаемому имуществу и до наступления опасности разрушения технологи­ческих установок . ТРВ ВД лучше использовать в качестве средства объёмного или локально объёмного пожаротушения, что пока не вписыва­ется в способы, указанные в нормативном доку­менте , но такие системы (ТРВ ВД) позволяют обеспечить достижение тех результатов, которые не могут обеспечить спринклерные автоматиче­ские установки пожаротушения .

Системы пожаротушения НД сохраняют ве­дущую роль в системах противопожарной зашиты из-за развитой нормативной правовой базы, отра­ботанных проектных и технологических решений, сформировавшегося положительного отношения страховых компаний.

Системы пожаротушения тонкораспылённой водой высокого давления после создания высоко­эффективных распылителей и форсунок ТРВ ВД на основе новых технологий, инструментария и материалов, экспериментально показывают свои существенно более высокие потенциальные воз­можности и эффективность. Однако низкие темпы формирования нормативной и расчётно-аналити­ческой базы для их применения являются серьёз­ным сдерживающим фактором для перехода на их широкое использование.

ЛИТЕРАТУРА

1. СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автома­тические. Нормы и правила проектирования. - М.: МЧС России, ВНИИПО МЧС России. 2009. - 114 с.

2. Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасно­сти». - М.: Проспект. 2014. - 111 с.

3. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений». - М., 2009. - 20 с.

4. ONR CEN/TS 14972:2011. Ortsfeste Brandbekampfungsanlagen – Feinspruh Loschanlagen // Planung und Einbau; Deutsche Fassung, Belgium, Brussel, Europaisches Komitee fur Normung, 2011, S. 9.

5. NFPA 750. Standart on Water Mist Fire Protection Systems. – Las Vegas, An International Codes and Standarts Organization, National Fire Protection Association, 2015, 88 p.

6. Гергель В. И., Цариченко С. Г., Поляков Д. В. Пожаро­тушение тонкораспылённой водой установками высокого дав­ления оперативного применения // Пожарная безопасность. - 2006. - № 2. - С. 125-132.

7. Противопожарная защита для офисных зданий [Элек­тронный ресурс] // Каталог фирмы MARIOFF CORPORATION. Режим доступа: http://www.marioff.com/fire-protection/fire-protection-for-buildings/fire-protection-for-office-buil...

8. Модуль пожаротушении тонкораспылённой водой ЕI-МISТ [Электронный ресурс] // Официальный сайт компа­нии ООО «Пламя Е1» (Пожарная безопасность и оборудова­ние) [сайт]. Режим доступа: http://www.plamya-ei.ru/produkcija/ei-mist (Дата обращения 24.05.2017 г.).

9. Пахомов В. П. Особенности применения АУПТ тонкораспылённой воды // Пожарное дело в строительстве. - 2009. - № 5. - С. 59-65.

10. НПБ 88-01. Установки пожаротушения и сигнализа­ции. Нормы и правила проектирования. - М.: МВД РФ, Государ­ственная противопожарная служба, 2002. - 119 с.

Рекомендуем почитать

Наверх