Физика как зависит точность от количества измерений. Определение точности измерений. Понятие погрешности измерения. Погрешность измерения и ее нахождение

Реклама 05.12.2023
Реклама

Погрешности средств измерений отражают несовершенство измерительного устройства и возникают вследствие многих причин, а именно: несовершенства конструкции, материалов и технологии изготовления, неудовлетворительного качества изготовления, погрешности градуировки и др.

Погрешность прибора характеризует отличие его показаний от истинного или действительного значения измеряемой величины. Погрешность преобразователя определяется отличием номинальной (т.е. приписываемой преобразователю) характеристики преобразования или коэффициента преобразования от их истинного значения.

Погрешность меры характеризует отличие номинального значения меры от истинного значения воспроизводимой ею величины. Для многозначной меры погрешность при данном показании определяется как разность между показанием и 1 действительным значением измеряемой величины. Номинальное значение меры - значение данной физической величины, обозначенное на мере (или на ее футляре). Это определение относится главным образом к однозначным мерам. Для многозначных мер и магазинов мер - это «показание меры», под которым подразумевают значение величины, воспроизводимой мерой, устанавливаемое по отсчету. Вариация показаний - наибольшая разность между показаниями, по- 1 лученными при многократно повторенных измерениях одной и той же величины.

По способу выражения различают погрешности:

- абсолютная погрешность прибора - разность между показаниями прибора x п и истинным значением х измеряемой величины: А =х п - х.

- относительная погрешность прибора - отношение абсолютной погрешности прибора к истинному (действительному) значению измеряемой величины: А/х или в процентах 100дельта/x, где если х >>дельта, то вместо х с достаточной степенью точности можно использовать х П.

- приведенная погрешность прибора - отношение в процентах абсолютной погрешности прибора к нормирующему значению: Д = 100/xнорм.

В соответствии с ГОСТ 8.401-80 уормирующее значение х н принимается равным:

Большему из пределов измерений или большему из модулей пределов измерений для СИ с равномерной или степенной шкалой, если нулевая отметка находится на краю или вне диапазона измерений;

Арифметической сумме модулей пределов измерений, если нулевая отметка находится внутри диапазона измерений;

Установленному номинальному значению для СИ с установленным номинальным значением измеряемой величины;

Всей длине шкалы для приборов с существенно неравномерной шкалой, при этом абсолютные погрешности также выражают в единицах длины.

Во всех остальных случаях нормирующее значение устанавливается стандартами для соответствующих видов СИ.

Для преобразователей определение абсолютных и относительных погрешностей несколько сложнее. Они определяются по входу Д вх и выходу Д вых и характеризуют отличие реальной характеристики преобразования у = F (х) от номинальной у н = F H (x) .

Рис. Формирование погрешности преобразования

Для оценки погрешности по выходу находят значения у и у н при заданной величине х. Тогда Д вых = у - у н , а относительная погрешность А = Д вых /у р. По входу Д вх = х н - х; где х н = F H- ] (y) определяется через значение у р и функцию, обратную F H , т.е. х н - такое значение х, которое при номинальной характеристике дало бы на входе значение у р А = Д вх /х - относительная погрешность.

Уже отмечалось, что в зависимости от условий применения СИ погрешности делятся на основную (при нормальных условиях) и дополнительную (при рабочих условиях).

В зависимости от поведения измеряемой величины во времени различают статическую и динамическую погрешности, а также погрешность в динамическом режиме. Статическая погрешность СИ (А ст) - погрешность СИ, используемого для измерения постоянной величины (например, амплитуды периодического сигнала). Погрешность в динамическом режиме (А дин р) - погрешность СИ, используемого для измерения переменной во времени величины.

САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СЕРВИСА И ЭКОНОМИКИ

по дисциплине: «Метрология, стандартизация, сертификация»

на тему: «Погрешность измерений. Точность и достоверность результатов измерений»

Выполнила:

Курс: 3, заочное отделение

Специальность: Экономика и управление на предприятии (здравоохранения)

Санкт-Петербург, 2008

Введение 3

Погрешность измерений 4

Точность и достоверность результатов измерений 9

Заключение 11

Список использованной литературы 12

Введение

Метрология как наука и область практической деятельности человека зародилась в глубокой древности. На всем пути развития человеческого общества измерения были основой взаимоотношений людей между собой, с окружающими предметами, с природой. При этом вырабатывались определенные представления о размерах, формах, свойствах предметов и явлений, а также правила и способы их сопоставления.

С течением времени и развитием производства ужесточились требования к качеству метрологической информации, что привело в итоге к созданию системы метрологического обеспечения деятельности человека.
В данной работе мы рассмотрим одно из направлений метрологического обеспечения - метрологическое обеспечение деятельности по сертификации и стандартизации продукции в Российской Федерации.

Погрешность измерений

Метрология – наука об измерениях, методах средствах обеспечения их единства и способах достижения требуемой точности.

Измерение – нахождение значения физической величины опытным путем с помощью спец тех средств.

Значение физической величины это - количественная оценка, т.е. число, выраженное в определенных единицах, принятых для данной величины. Отклонение результата измерения от истинного значения физической величины называют погрешностью измерения:

где А – измеренное значение, А0 – истинное.

Так как истинное значение неизвестно, то погрешность измерения оценивают исходя из свойств прибора, условий эксперимента, анализа полученных результатов.

Обычно объекты исследования обладают бесконечным множеством свойств. Такие свойства называют существенными или основными. Выделение существенных свойств называют выбором модели объекта. Выбрать модель - значит установить измеряемые величины, в качестве которых принимают параметры модели.

Идеализация, присутствующая при построении модели, обуславливает несоответствие между параметром модели и реальным свойством объекта. Это приводит к погрешности. Для измерений необходимо, чтобы погрешность была меньше допустимых норм.

Виды, методы и методики измерений.

В зависимости от способа обработки экспериментальных данных различают прямые, косвенные, совокупные и совместные измерения.

Прямые - измерение, при котором искомое значение величины находят непосредственно из опытных данных (измерение напряжения вольтметром).

Косвенные - измерение, при котором искомое значение величины вычисляется по результатам прямых измерений других величин (коэффициент усиления усилителя вычисляют по измеренным значениям входного и выходного напряжений).

Результат, полученный в процессе измерения физической величины на некотором временном интервале - наблюдением. В зависимости от свойств исследуемого объекта, свойств среды, измерительного прибора и других причин измерения выполняют с однократным или многократным наблюдениями. В последнем случае для получения результата измерения требуется статистическая обработка наблюдений, а измерения называют статистическими.

В зависимости от точности оценки погрешности различают измерения с точным или с приближенным оцениванием погрешности. В последнем случае учитывают нормированные данные о средствах и приближенно оценивают условия измерений. Таких измерений большинство. Метод измерения – совокупность средств и способов их применения.

Числовое значение измеряемой величины определяют путем её сравнения с известной величиной - мерой.

Методика измерений - установленная совокупность операций и правил, выполнение которых обеспечивает получение результата измерений в соответствии с выбранным методом.

Измерение – единственный источник информации о свойствах физических объектов и явлений. Подготовка к измерениям включает:

· анализ поставленной задачи;

· создание условий для измерений;

· выбор средств и методов измерений;

· подготовку оператора;

· опробование средств измерений.

Достоверность результатов измерений зависит от условий, в которых выполнялись измерения.

Условия – это совокупность величин, влияющих на значение результатов измерения. Влияющие величины разделяются на следующие группы: климатические, электрические и магнитные (колебания электрического тока, напряжения в сети), внешние нагрузки (вибрации, ударные нагрузки, внешние контакты приборов). Для конкретных областей измерений устанавливают единые нормальные условия. Значение физической величины, соответствующее нормальному, называют номинальным. При выполнении точных измерений применяют специальные средства защиты, обеспечивающие нормальные условия.

Организация измерений имеет большое значение для получения достоверного результата. Это в значительной мере зависит от квалификации оператора, его технической и практической подготовки, проверки средств измерений до начала измерительного процесса, а также выбранной методики проведения измерений. Во время выполнения измерений оператору необходимо:

· соблюдать правила по технике безопасности при работе с измерительными приборами;

· следить за условиями измерений и поддерживать их в заданном режиме;

· тщательно фиксировать отсчеты в той форме, в которой они получены;

· вести запись показаний с числом цифр после запятой на две больше, чем требуется в окончательном результате;

· определять возможный источник систематических погрешностей.

Принято считать, что погрешность округления при снятии отсчета оператором не должна изменять последнюю значащую цифру погрешности окончательного результата измерений. Обычно ее принимают равной 10 % от допускаемой погрешности окончательного результата измерений. В противном случае число измерений увеличивают настолько, чтобы погрешность округления удовлетворяла указанному условию. Единство одних и тех же измерений обеспечивается едиными правилами и способами их выполнения.

Выполнение измерений.

Слагаемые делят на погрешность меры, погрешность преобразования, погрешность сравнения, погрешность фиксации результата. В зависимости от источника возникновения могут быть:

· погрешности метода (из-за неполного соответствия принятого алгоритма математическому определению параметра);

· инструментальные погрешности (из-за того, что принятый алгоритм не может быть точно реализован практически);

· внешние ошибки - обусловлены условиями, в которых проводятся измерения;

· субъективные ошибки - вносятся оператором (неправильный выбор модели, ошибки отсчитывания, интерполяции и т.д.).

В зависимости от условий применения средств выделяют:

· основную погрешность средства, которая имеет место при нормальных условиях (температура, влажность, атмосферное давление, напряжение питания и т.д.), оговоренных ГОСТ;

· дополнительную погрешность, которая возникает при отклонении условий от нормальных.

В зависимости от характера поведения измеряемой величины различают:

· статическую погрешность - погрешность средства при измерении постоянной величины;

· погрешность средства измерения в динамическом режиме. Она возникает при измерении переменной во времени величины, из-за того, что время установления переходных процессов в приборе больше интервала измерения измеряемой величины. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и статической погрешностью.

По закономерности проявления различают:

· систематическую погрешность - постоянную по величине и знаку, проявляющуюся при повторных измерениях (погрешность шкалы, температурная погрешность и т.д.);

· случайную погрешность - изменяющуюся по случайному закону при повторных измерениях одной и той же величины;

· грубые погрешности (промахи) следствие небрежности или низкой квалификации оператора, неожиданных внешних воздействий.

По способу выражения различают:

· абсолютную погрешность измерения, определяемую в единицах измеряемой величины, как разность между результатом измерения А и истинным значением А 0:

· относительную погрешность - как отношение абсолютной погрешности измерения к истинному значению:

Так как А 0 =А n , то на практике в вместо А 0 подставляют А п.

Абсолютную погрешность измерительного прибора

Δ n =A n -A 0 ,

где А п - показания прибора;

Относительную погрешность прибора:

Приведенную погрешность измерительного прибора

где L - нормирующее значение, равное конечному значению рабочей части шкалы, если нулевая отметка находится на краю шкалы; арифметической сумме конечных значений шкалы (без учета знака), если нулевая отметка находится внутри рабочей части шкалы; всей длине логарифмической или гиперболической шкалы.

Точность и достоверность результатов измерений

Точность измерений - степень приближения измерения к действительному значению величины.

Достоверность – это характеристика знаний как обоснованных, доказанных, истинных. В экспериментальном естествознании достоверными знаниями считаются те, которые получили документальное подтверждение в ходе наблюдений и экспериментов. Наиболее полным и глубоким критерием достоверности знаний является общественно-историческая практика. Достоверные знания следует отличать от вероятностных знаний, соответствие которых действительности утверждается только в качестве возможной характеристики.

Точность измерения - это степень приближения результатов из­мерения к некоторому действительному значению физической величины. Чем меньше точность, тем больше погрешность изме­рения и, соответственно, чем меньше погрешность, тем выше точность.

Даже самые точные приборы не могут показать действитель­ного значения измеряемой величины. Обязательно существует погрешность измерения, причинами которой могут быть различ­ные факторы.

Погрешности могут быть:

систематические, например, если тензосопротивление плохо наклеено на упругий элемент, то деформация его решетки не будет соответствовать деформации упругого элемента и датчик будет постоянно неправильно реагиро­вать;

случайные, вызванные, например, неправильным функцио­нированием механических или электрических элементов измерительного устройства;

грубые, как правило, допускаются самим исполнителем, ко­торый из-за неопытности или усталости неправильно счи­тывает показания прибора или ошибается при обработке информации. Их причиной могут стать и неисправность средств измерений, и резкое изменение условий измерения.

Полностью исключить погрешности практически невозмож­но, а вот установить пределы возможных погрешностей измере­ния и, следовательно, точность их выполнения необходимо

Классификация и метрологические характеристики средств измерений

Средства измерений, утвержденные Госстандартом России, ре­гистрируются в государственном Реестре средств измерений, удостоверяются сертификатами соответствия и только после это­го допускаются для применения на территории Российской Фе­дерации.

В справочных изданиях принята следующая структура описания средств измерений: регистрационный номер, наименование, номер и срок действия сертификата об утверждении типа средства измерения, местонахождение изготовителя и основные метрологические характеристики. Последние оценивают пригодность средств измерений к измерениям в известном диапазоне с известной точностью.

Метрологические характеристики средств измерений обеспечивают:

Возможность установления точности измерений;

Достижение взаимозаменяемости и сравнение средств из­мерений между собой;

Выбор нужных средств измерений по точности и другим характеристикам;

Определение погрешностей измерительных систем и установок;

Оценку технического состояния средств измерений при их поверке.

Метрологические характеристики, установленные документами, считаются действительными. На практике наиболее распространены следующие метрологические характеристики средств измерений:

диапазон измерений - область значений измеряемой величины, для которой нормированы допускаемые пределы погрешности СИ;



предел измерения - наибольшее или наименьшее значение диапазона измерения. Для мер - это номинальное значе­ние воспроизводимой величины.

Шкала измерительного прибора - градуированная совокупность отметок и цифр на отсчетном устройстве средства измерения, соответствующих ряду последовательных значений измеряемой величины

Цена деления шкалы - разность значений величин, соответ­ствующих двум соседним отметкам шкалы. Приборы с равно­мерной шкалой имеют постоянную цену деления, а с неравно­мерной - переменную. В этом случае нормируется минималь­ная цена деления.

Основная нормируемая метрологическая характеристика средств измерений - это погрешность, т. е. разность между по­казаниями средств измерений и истинными (действительными) значениями физических величин.

Все погрешности в зависимости от внешних условий делятся на основные и дополнительные.

Основная погрешность - это погрешность при нормальных условиях эксплуатации.

На практике, когда имеется более широкий диапазон влияющих величин, нормируется и дополнительная погрешность средств измерений.

В качестве предела допускаемой погрешности выступаетнаибольшая погрешность, вызываемая изменением влияющей величины, при которой средство измерения по техническим требованиям может быть допущено к применению.

Класс точности - это обобщенная метрологическая характе­ристика, определяющая различные свойства средства измерения. Например, у показывающих электроизмерительных прибо­ров класс точности помимо основной погрешности включает в себя также вариацию показаний, а у мер электрических вели­чин - величину нестабильности (процентное изменение значе­ния меры в течение года).

Класс точности средства измерения уже включает системати­ческую и случайную погрешности. Однако он не является непо­средственной характеристикой точности измерений, выполняе­мых с помощью этих СИ, поскольку точность измерения зави­сит и от методики измерения, взаимодействия СИ с объектом, условий измерения и т. д.

Измерение – совокупность операций по применению технического средства, хранящего единицу величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей в явном или неявном виде и получение значения этой величины. Вообще метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Усовершенствование точности измерений стимулировало развитие наук, предоставляя более достоверные и чувствительные средства исследований. От точности средств измерения зависит эффективность выполнения различных функций: погрешности счетчиков энергии приводят к неопределенности в учете электроэнергии; погрешности весов ведут к обману покупателей или к большим объемам неучтенного товара.

Повышение точности измерений позволяет определить недостатки технологических процессов и устранить эти недостатки, что приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, сырья, материалов.

Измерения могут быть классифицированы по характеристике точности на:

    Равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях;

    Неравноточные - ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях.

К разным видам средств измерения предъявляют специфические требования: например, лабораторные средства должны обладать повышенной точностью и чувствительностью. Высокоточными СИ являются, например, эталоны. Эталон единицы величины – средство измерений, предназначенное для воспроизведения и хранения единицы величины, кратных или дольных ее значений с целью передачи ее размера другим средствам измерений данной величины. Эталоны являются высокоточными средствами измерений и поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз» от более точных средств измерений к менее точным «по цепочке»: первичный эталон (вторичный эталон (рабочий эталон 0-го разряда (рабочий эталон 1-го разряда … (рабочее средство измерений. Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Все метрологические свойства средств измерений можно разделить на две группы:

    Свойства, определяющие область применения СИ

    Свойства, определяющие качество измерения. К таким свойствам относятся точность, сходимость и воспроизводимость.

Наиболее широко в метрологической практике используется свойство точности измерений, которое определяется погрешностью. Погрешность измерения – разность между результатом измерения и истинным значением измеряемой величины.

Точность измерений СИ – качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины.

Точность определяется показателями абсолютной и относительной погрешности.

Абсолютная погрешность определяется по формуле: Хп= Хп - Х0, где: Хп – погрешность поверяемого СИ; Хп – значение той же самой величины, найденное с помощью поверяемого СИ; Х0 - значение СИ, принятое за базу для сравнения, т.е. действительное значение.

Однако в большей степени точность средств измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ.

В стандартах нормируют характеристики точности, связанные и с другими погрешностями:

Систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины. Такая погрешность может проявиться, если смещен центр тяжести СИ или СИ установлен не на горизонтальной поверхности.

Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. Такие погрешности не закономерны, но неизбежны и присутствуют в результатах измерения.

Погрешность измерений не должна превышать установленных пределов, которые указаны в технической документации к прибору или в стандартах на методы контроля (испытаний, измерений, анализа).

Чтобы исключить значительные погрешности, проводят регулярную поверку средств измерений, которая включает в себя совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными органами с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.

Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Обозначение классов точности осуществляются следующим образом:

    Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.

    Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах.

Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в нормативных документах. Средствам измерений с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины.

Классы точности присваиваются при разработке СИ по результатам приемочных испытаний. В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки.

При подготовке и проведении высокоточных измерений в метрологической практике учитывают влияние объекта измерения, субъекта, метода измерения, средства измерения, условий измерения. Так, объект должен быть всесторонне изучен; элемент субъективизма в результатах измерения должен быть сведен к минимуму; учитывают факторы и условия, которые могут искажать результаты измерений. Поэтому необходимо соблюдать методику выполнения измерений, чтобы получить результаты с минимальной погрешностью. Такие методики изложены в законе РФ «Об обеспечении единства измерений. А в 1997 году начал действовать ГОСТ 8.563-96 «ГСИ. Методики выполнения измерений».

В моей повседневной работе мне не часто приходится сталкиваться с различными средствами измерений. Однако приведу некоторые сравнительные примеры, в которых о точности можно судить по порогу чувствительности. Во многих современных продуктовых магазинах сейчас установлены электронные весы, являющиеся рабочим средством измерений. Диапазон таких весов – от 0 до 10 кг, а цена деления (если так можно выразиться для электронной версии весов) или порог чувствительности составляет 1 грамм. Таким образом, точность взвешивания достаточно высока и погрешность может составлять 0.001 кг. И не только точность измерения, но и точность расчетов с покупателями - ведь от веса продукта зависит его цена. К сожалению, класс точности не был указан на корпусе, а сотрудники при таком вопросе пришли в замешательство.

В продуктовых магазинах часто можно встретить и обыкновенные весы, на которых взвешивают с помощью гирек, которые тоже являются рабочим средством измерений. Я первый раз обратила внимание на такие весы и увидела(!), что в нашем магазине они стоят на неровной поверхности. Дело в том, что в корпус весов вмонтирован полый шарик, наполненный водой. Если весы установлены ровно, то верхняя кромка воды (под действием физических законов) располагается параллельно поверхности. В моем случае это явно было не соблюдено. Диапазон весов – от 0 до 5 кг, а порог чувствительности – 10 грамм. Из этого следует, что такие весы менее точные, нежели описанные выше - электронные, так как погрешность может составлять 0.01 кг.

У нас на работе на складе установлены весы для взвешивания овощей. Эти весы имеют диапазон от 0 до 200 кг, так что любой взрослый человек может легко на них взвеситься. Порог чувствительности составляет 200 грамм и это указано на циферблате. Помимо этого, на циферблате указано, что весы изготовлены фирмой Suprema S.p.a., диапазон 0-200 кг, e-d=200 gr, серийный номер № 122001/21 и индивидуальный номер №91097. Также там указан и класс точности - III - для подобных средств измерений, относящихся к профессиональному оборудованию. В паспорте этих весов указано, что классы точности для данной продукции установлены от I до III, вероятно, согласно нормативным документам, действующим в стране-производителе.

И, наконец, безмен, имеющий самый низкий класс точности и являющийся рабочим средством измерения. С помощью этого средства можно произвести скорее примерное взвешивание, т.к. цена деления составляет 0.5 кг и погрешность при измерении будет очень значительна. Диапазон безмена – от 0 до 7 кг. Но даже при таком неточном средстве измерения, результат зависит от некоторых факторов. В данном случае результат измерений напрямую зависел от человека, производящего измерения. При повторном взвешивании погрешность была очень высока и зависела от дрожания рук и от того, насколько точно вертикально было положение безмена. 1

Рекомендуем почитать

Наверх