Площадь боковой и полной поверхности конуса. Построение разверток - медницко-жестяницкие работы Вопросы для самоконтроля

Новости 11.09.2024
Новости

На рис. 8 построена развертка боковой поверхности эллиптического цилиндра, в который для построения развертки вписана двенадцатиугольная призма. Поверхность имеет фронтальную плоскость симметрии. Самая длинная образующая - нулевая, самая короткая - шестая, по ней и сделан разрез поверхности. Развертка - фигура симметричная относительно нулевой образующей. Истинная величина половины нормального сечения поверхности плоскостью Sum построена на плоскости П4 - эллипс. Разворачиваем дугу полуэллипса в прямую 0 - 6с помощью хорд 04-14, ... 54 - 64, заменяющих кривые участки эллипса. В точках 0, 1, ... 6 на развертке восстанавливаем перпендикуляры, по которым откладываем натуральную длину участков, образующих поверхности (до нормального сечения и после него), измеренную на плоскости П2. Концы отрезков соединяем плавными кривыми, которые являются разверткой оснований поверхности. С помощью седьмой образующей на развертку нанесена точка поверхности.

3.3 Построение развертки призмы правильной формы

Построение разверток призматических и цилиндрических поверхностей значительно упрощается, если они представлены простыми прямыми фигурами.

Для примера на рис. 9 приведена развертка трехгранной призмы правильной формы. Развертки ее строим, воспользовавшись тем, что ребра ее АА, ВВ, СС параллельны фронтальной плоскости проекций и проецируются на нее в натуральную величину, а нижнее ABC и верхнее А"В"С" основания параллельны горизонтальной плоскости проекций и проецируются на нее в натуральную величину. Точка М на развертке трехгранной призмы строится обычным способом.

3.4 Построение развертки прямого кругового цилиндра

На рис. 10 приведен пример построения развертки прямого кругового цилиндра. Ее высота Н на фронтальную плоскость проекций проецируется в натуральную величину, а нижнее и верхнее основания параллельны горизонтальной плоскости проекций и на нее проецируются в натуральную величину. В этом случае развертку цилиндрической поверхности строим с помощью хорд, соединяющих соседние точки деления окружности оснований, в который вписан правильный двенадцатиугольник. В этом случае цилиндрическая поверхность условно заменена поверхностью вписанной правильной двенадцатигранной призмы, и развертка цилиндрической поверхности построена способом триангуляции.

Положение точки М на развертке цилиндрической поверхности определяется обычным способом.

4. Вопросы для самопроверки

Что называется разверткой поверхности тела.

Что представляют собой развертки боковых поверхностей: а) прямой призмы; б) прямого кругового цилиндра; в) прямого кругового конуса

В чем заключается способ треугольников и способ нормального сечения.

С чего начинается построение развертки поверхности наклонной четырехугольной пирамиды SABCD

Каким способом строится развертка боковой поверхности эллиптического цилиндра.

Аналогично построению развертки, какой поверхности строится развертка боковой поверхности наклонного конуса.

Список литературы

    Васильев В.Е., Начертательная геометрия. М.: Высш.шк., 2002

    Гордон В.О., Семенцов-Огиевский М.А., Курс начертательной геометрии. М.: Высш. шк., 2008

    Королев Ю.И., Начертательная геометрия: Учебник для вузов. - Спб.: Питер, 2007.

    Соломонов К.Н., Бусыгина Е.Б., Чиченева О.Н. Начертательная геометрия: Учебник. - М.: МИСИС: ИНФРА-М, 2004.

    Чекмарев А.А., Начертательная геометрия и черчение: - М.: Гуманит. изд. центр ВЛАДОС, 2002.

Цель лекции: изучение свойств развертки и способов построения разверток многогранников и поверхностей вращения

· Развертка поверхностей. Общие понятия.

· Способы построения разверток: методы триангуляции, нормального сечения и раскатки.

· Построение разверток гранных поверхностей и поверхностей вращения.

Развертка поверхностей. Общие понятия

Развертка плоская фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения граней или иных элементов поверхности друг на друга). Развертку можно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся , а полученную плоскую фигуру – ее разверткой.
Основные свойства развертки 1 Длины двух соответствующих линий поверхности и ее развертки равны между собой; 2 Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке; 3 Прямой на поверхности соответствует также прямая на развертке; 4 Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке; 5 Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Методы триангуляции, нормального сечения и раскатки

Построение разверток гранных поверхностей и поверхностей вращения

а) Развертка поверхности многогранника.

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Метод триангуляции

Пример 1. Развертка пирамиды (рисунок 13.1).

При построении развертки пирамиды применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих.

Рисунок 13.1. Пирамида и её развертка

Для этого необходимо знать натуральную величину ребер и сторон основания. Алгоритм построения можно сформулировать следующим образом (рисунок 13.2):

Рисунок 13.2. Определение истинной величины

основания и ребер пирамиды

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К 0 и К ÎSАD , а иллюстрацией второго случая являются точки М 0 и М 0 * . Для определения точки К 0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S 0 М 0 и, наконец, точки К 0 .

Рисунок 13.3. Построение развертки пирамиды

Способ нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пример 2. Развертка призмы (рисунок 13.4).

Пересекая призму вспомогательной плоскостью α , перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1 , 2 , 3 , а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 1 0 -1 0 * , равный периметру нормального сечения. Через точки 1 0 , 2 0 , 3 0 и 1 0 * проводят прямые, перпендикулярные 1 0 -1 0 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 1 0 , отложены отрезки 1 0 D 0 =1 4 D 4 и 1 0 А 0 =1 4 А 4 .. Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Способ раскатки

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рисунок 13.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Рисунок 13.4. Развертка призмы способом нормального сечения

Рисунок 13.5. Развертка призмы способом раскатки

Затем новую проекцию призмы вращают вокруг ребра С 4 F 4 до тех пор пока грань ACDF не станет параллельной плоскости П 4 .

При этом положение ребра С 4 F 4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П 1 то на эту плоскость проекций они проецируются без искажения, т.е. R =A 1 C 1 =D 1 F 1 ), расположенных в плоскостях, перпендикулярных ребру С 4 F 4 .

Таким образом, траектории движения точек A и D на плоскость П 4 проецируются в прямые, перпендикулярные ребру С 4 F 4 .

Когда грань ACDF станет параллельна плоскости П 4 , она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF . Таким образом, засекая перпендикуляры, по которым перемещаются точки A 4 и D 4 дугой радиуса R =A 1 C 1 =D 1 F 1 , можно получить искомое положение точек развертки A 0 и D 0 .

Следующую грань АBDE вращают вокруг ребра AD . На перпендикулярах, по которым перемещаются точки B 4 и E 4 делают засечки из точек A 0 и D 0 дугой радиуса R =A 1 B 1 =D 1 E 1 . Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П 4 и проходящую через ребро С 4 F 4 .

Построение на развертке точки К , принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

б) Развертка цилиндрической поверхности.

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рисунок 13.6). Чем больше углов в призме, тем точнее развертка (при n → призма преобразуется в цилиндр).

в) Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рисунок 13.6).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l , а центральный угол φ =360 о r / l , где r – радиус окружности основания конуса.

Рисунок 13.6. Развертка цилиндрической поверхности

Рисунок 13.7. Развертка конической поверхности

Контрольные вопросы

1 Что называют разверткой поверхности?

2 Какие поверхности называют развертывающимися и какие – неразвертывающимися?

3 Укажите основные свойства разверток

4 Укажите последовательность графических построений разверток поверхностей конуса и цилиндра.

5 Какие способы построения разверток многогранников вы знаете?

Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов и других изделий необходимо из листового материала вырезать их развертки.

Разверткой поверхности многогранника называют плоскую фигуру, полученную в результате последовательного совмещения с плоскостью чертежа всех граней многогранника.

Построение разверток поверхности многогранников состоит из определения натуральной величины граней и построения на плоскости в последовательном порядке всех граней. Размеры граней, если они спроецированы не в натуральную величину, находят способами вращения или перемены плоскостей проекций, приведенными в предыдущем параграфе.

Рассмотрим построение разверток некоторых простейших тел.

Развертка поверхности прямой призмы представляет собой плоскую фигуру, составленную из боковых граней – прямоугольников и двух равных между собой многоугольников оснований. Для примера взята правильная шестиугольная призма (рис. 4.17, а). Боковые грани призмы представляют собой равные между собой прямоугольники шириной а и высотой Я, а основания – правильные шестиугольники со стороной, равной а. Так как размеры граней известны, построение развертки нетрудно выполнить. Для этого на горизонтальной прямой последовательно откладывают шесть отрезков, равных стороне основания а шестиугольника, т.е. 6а . Из полученных точек восставляют перпендикуляры длиной, равной высоте призмы Я. Соединяя полученные отрезки, проводят вторую горизонтальную прямую. Полученный прямоугольник (H × 6a ) является разверткой боковой поверхности призмы. Затем на одной оси пристраивают фигуру оснований – два шестиугольника со сторонами, равными а. Контур обводят сплошной основной линией, a линии сгиба – штрихпунктирной тонкой с двумя точками.

Рис. 4.17.

С помощью подобного построения можно вычертить развертки прямых призм с любой фигурой в основании. Разница будет лишь в количестве и ширине граней боковой поверхности.

Аналогично строится и развертка поверхности цилиндра (рис. 4.17, б ). Только ширина ее равняется πd (длине окружности основания).

Развертка поверхности правильной пирамиды представляет собой плоскую фигуру, составленную из боковых граней – равнобедренных или равносторонних треугольников и правильного многоугольника основания. Для примера взята правильная четырехугольная пирамида (рис. 4.18a ). Решение задачи осложняется тем, что неизвестна величина боковых граней пирамиды, так как их ребра не параллельны ни одной из плоскостей проекций. Поэтому начинают построение с определения величины ребра способом вращения (см. рис. 4.15, в ). Определив длину наклонного ребра SA, равную s"a" 1, проводят из произвольной точки 5, как из центра, дугу окружности радиусом s"a" 1. По этой дуге откладывают четыре отрезка равных стороне основания пирамиды, которое на чертеже спроецировалось в истинную величину. Найденные точки соединяют прямыми с точкой s. Получив таким образом развертку боковой поверхности, пристраивают к основанию одного из треугольников квадрат, равный основанию пирамиды.

Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 4.18, б ).

Рис. 4.18.

Построение выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, очерчивают радиусом R 1, равным образующей конуса s"a" 1, дугу окружности. Затем подсчитывают угол сектора по формуле α = 360° R/L, где R – радиус окружности основания конуса; L – длина образующей боковой поверхности конуса. В примере α = 360° 15/38 ≈ 142,2°.

Этот угол строят симметрично относительно осевой линии с вершиной в точке S. К полученному сектору пристраивают круг с центром на осевой линии и диаметром, равным диаметру основания конуса.

Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.

Рекомендуем почитать

Наверх