Число бога, числа фибоначчи, золотое сечение

Кадры 14.10.2019
Кадры
Числа Фибоначчи... в природе и жизни

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение
Числа Фибоначчи или Последовательность Фибоначчи – числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

2.

Полное определение чисел Фибоначчи

3.


Свойства последовательности Фибоначчи

4.

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют(ФИ).

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

5.


Связь последовательности Фибоначчи и «золотого сечения»

6.

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A-–C--–B

7.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

8.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

9.

Пропорции Фибоначчи и золотого сечения в природе и истории

10.


Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

11.

Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.

12.

1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.

Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

по материалам книги Б. Биггса «вышел хеджер из тумана»

О числах Фибоначчи и трейдинге

В качестве вступления к теме ненадолго обратимся к техническому анализу. Если говорить кратко, то технический анализ ставит задачей предсказать будущее движение цены актива, основываясь на прошлых исторических данных. Наиболее известная формулировка его сторонников — цена уже включает в себя всю необходимую информацию. Реализация технического анализа началась с развитием биржевых спекуляций и наверное полностью не закончена до сих пор, поскольку потенциально сулит неограниченные заработки. Наиболее известными методиками (терминами) в технализе являются уровни поддержки и сопротивления, японские свечи, фигуры, предвещающие разворот цены и др.

Парадоксальность ситуации на мой взгляд заключается в следующем — большинство описанных методов получили столь большое распространение, что, несмотря на отсутствие доказательной базы по их эффективности, действительно получили возможность влиять на поведение рынка. Поэтому даже скептикам, которые пользуются фундаментальными данными, стоит учитывать эти понятия просто потому, что их учитывает очень большое число других игроков («технарей»). Технический анализ может хорошо работать на истории, но стабильно зарабатывать с его помощью на практике не удается практически никому — гораздо проще разбогатеть, издав большим тиражом книгу «как стать миллионером, используя технический анализ»…

В этом смысле особняком стоит теория Фибоначчи, также применяемая для предсказания цены на разные сроки. Ее последователей обычно называют «волновиками». Особняком она стоит потому, что появилась не одновременно с рынком, а гораздо раньше — аж на целых 800 лет. Другая ее особенность в том, что теория нашла свое отражение чуть ли не как мировая концепция для описания всего и вся, и рынок является лишь частным случаем для ее приложения. Эффектность теории и срок ее существования обеспечивают ей как новых сторонников, так и новые попытки составить наименее спорное и общепризнанное описание поведения рынков на ее основе. Но увы — дальше отдельных удачных рыночных предсказаний, которые можно приравнять к везению, теория все-таки не продвинулась.

Суть теории Фибоначчи

Фибоначчи прожил долгую, особенно для своего времени, жизнь, которую посвятил решению ряда математических задач, сформулировав их в своем объемном труде «Книга о счетах» (начало 13 века). Его всегда интересовала мистика чисел — вероятно, он был не менее гениален, чем Архимед или Евклид. Задачи, связанные с квадратными уравнениями, ставились и частично решались и до Фибоначчи, например известным Омаром Хайямом — ученым и поэтом; однако Фибоначчи сформулировал задачу о размножении кроликов, выводы из которой и принесли ему то, что позволило его имени не затеряться в веках.

Вкратце задача заключается в следующем. В место, огороженное со всех сторон стеной, поместили пару кроликов, причем любая пара кроликов производит на свет другую пару каждый месяц, начиная со второго месяца своего существования. Размножение кроликов во времени при этом будет описываться последовательностью: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 и т.д. С математической точки зрения последовательность оказалась просто уникальной, поскольку обладала целым рядом выдающихся свойств:

  • сумма двух любых последовательных чисел есть следующее число последовательности;

  • отношение каждого числа последовательности, начиная с пятого, к предыдущему, равно 1.618;

  • разница между квадратом любого числа и квадратом числа на две позиции левее, будет числом Фибоначчи;

  • сумма квадратов стоящих рядом чисел будет числом Фибоначчи, которое стоит через две позиции после большего из возведенных в квадрат чисел

Из этих выводов наиболее интересен второй, поскольку в нем используется число 1.618, известное как «золотое сечение». Это число было известно еще древним грекам, которые использовали его при постройке Парфенона (кстати, по некоторым данным служившим грекам Центробанком). Не менее интересно и то, что число 1.618 можно обнаружить в природе как в микро-, так и макромасштабе — от витков спирали на панцире улитки до больших спиралей космических галактик. Пирамиды в Гизе, созданные древними египтянами, при конструировании также содержали сразу несколько параметров ряда Фибоначчи. Прямоугольник, одна сторона которого больше другой в 1.618 раза, выглядит наиболее приятно для глаза — это соотношение использовал Леонардо да Винчи для своих картин, а в более житейском плане им иногда пользовались при создании окон или дверных проемов. Даже волну, как на рисунке в начале статьи, можно представить в виде спирали Фибоначчи.


В живой природе последовательность Фибоначчи проявляется не менее часто — ее можно найти в когтях, зубах, подсолнухе, паутине и даже размножении бактерий. При желании последовательность обнаруживается практически во всем, включая человеческое лицо и тело. И тем не менее существует мнение, что многие утверждения, находящие числа Фибоначчи в природных и исторических явлениях, неверны - это распространенный миф, который часто оказывается неточной подгонкой под желаемый результат.

Числа Фибоначчи на финансовых рынках

Одним из первых, кто наиболее плотно занимался приложением чисел Фибоначчи к финансовому рынку, был Р. Эллиот. Его труды не пропали даром в том смысле, что рыночные описания с применением теории Фибоначчи часто называются «волнами Эллиота». В основу развития рынков здесь была положена модель развития человечества из суперциклов с тремя шагами вперед и двумя назад. То, что человечество развивается нелинейно, очевидно почти каждому — знания Древнего Египта и атомистическое учение Демокрита было полностью утрачено в Средневековье, т.е. спустя примерно 2000 лет; 20 век породил такой ужас и ничтожность человеческой жизни, которые сложно было представить даже в эпоху Пунических войн греков. Однако даже если принять теорию шагов и их количество за истину, остается неясной размер каждого шага, что делает волны Эллиота сравнимыми с предсказательной силой орла и решки. Отправная точка и правильный расчет числа волн были и видимо будут главной слабостью теории.

Тем не менее локальные успехи у теории были. Боб Претчер, которого можно считать учеником Эллиота, правильно предсказал бычий рынок начала 80-х, а 1987 год — как поворотный. Это действительно случилось, после чего Боб очевидно чувствовал себя гением — по крайней мере, в глазах других он точно стал инвестиционным гуру. Подписка на Elliott Wave Theorist Пречтера в тот год выросла до 20 000, однако уменьшилась в начале 1990-х годов, поскольку предсказываемые далее «гибель и мрак» американского рынка решили немного повременить. Однако для японского рынка это сработало, и ряд сторонников теории, «опоздавших» там на одну волну, потеряли либо свои капиталы, либо капиталы клиентов своих компаний. Равным образом и с теми же успехами теорию нередко пытаются применить к торговле на валютном рынке.


Теория охватывает самые разные периоды торговли — от недельной, что роднит ее со стандартными стратегиями теханализа, до расчета на десятилетия, т.е. влезает на территорию фундаментальных предсказаний. Это возможно благодаря варьированию числа волн. Слабости теории, о которых говорилось выше, позволяют ее адептам говорить не о несостоятельности волн, а о собственных просчетах в их числе и неверном определении исходного положения. Это похоже на лабиринт — даже если у вас есть верная карта, то выйти по ней можно лишь при условии, что понимаешь, где именно находишься. Иначе пользы от карты нет. В случае же с волнами Эллиота есть все признаки сомневаться не только в правильности своего месторасположения, но и в верности карты как таковой.

Выводы

Волновое развитие человечества имеет под собой реальную основу — в средние века волны инфляции и дефляции чередовались между собой, когда войны сменяли относительно спокойную мирную жизнь. Наблюдение последовательности Фибоначчи в природе по крайней мере в отдельных случаях сомнения тоже не вызывает. Поэтому каждый на вопрос, кто есть Бог: математик или генератор случайных чисел — вправе давать собственный ответ. Лично мое мнение такого, что хотя всю человеческую историю и рынки можно представить в волновой концепции, высоту и продолжительность каждой волны не дано предугадать никому.

При этом 200 лет наблюдений за американским рынком и более 100 лет за остальными позволяют четко сказать, что фондовый рынок растет, проходя через различные периоды роста и стагнации. Этого факта вполне достаточно для долгосрочного заработка на фондовом рынке, не прибегая к спорным теориям и доверяя им больше капитала, чем следует в рамках разумных рисков.


Вам, конечно же, знакома идея о том, что математика является самой главной из всех наук. Но многие могут с этим не согласиться, т.к. порой кажется, что математика – это лишь задачи, примеры и тому подобная скукотища. Однако математика может запросто показать нам знакомые вещи с совершенно незнакомой стороны. Мало того – она даже может раскрыть тайны мироздания. Как? Давайте обратимся к числам Фибоначчи.

Что такое числа Фибоначчи?

Числа Фибоначчи являются элементами числовой последовательности, где каждое последующее посредством суммирования двух предыдущих, например: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Как правило, записывается такая последовательность формулой: F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2.

Числа Фибоначчи могут начинаться и с отрицательных значений «n», но в таком случае последовательность будет двусторонней – она будет охватывать и положительные и отрицательные числа, стремясь к бесконечности в двух направлениях. Примером такой последовательности может послужить: -34, -21, -13, -8, -5, -3, -2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, а формула будет: F n = F n+1 — F n+2 или же F -n = (-1) n+1 Fn.

Создателем чисел Фибоначчи является один из первых математиков Европы средних веков по имени Леонардо Пизанский, которого, собственно и знают, как Фибоначчи – это прозвище он получил спустя много лет после своей смерти.

При жизни Леонардо Пизанский очень любил математические турниры, по причине чего в своих работах («Liber abaci» /«Книга абака», 1202; «Practica geometriae»/«Практика геометрии», 1220, «Flos»/«Цветок», 1225 год – исследование на тему кубических уравнений и «Liber quadratorum»/«Книга квадратов», 1225 – задачи о неопределенных квадратных уравнениях) очень часто разбирал всевозможные математические задачи.

О жизненном пути самого Фибоначчи известно крайне мало. Но достоверно известно то, что его задачи пользовались огромнейшей популярностью в математических кругах в последующие века. Одну из таких мы и рассмотрим далее.

Задача Фибоначчи с кроликами

Для выполнения задачи автором были поставлены следующие условия: есть пара новорождённых крольчат (самка и самец), отличающихся интересной особенностью – со второго месяца жизни они производят новую пару кроликов – тоже самку и самца. Кролики находятся в замкнутом пространстве и постоянно размножаются. И ни один кролик не умирает.

Задача : определить количество кроликов через год.

Решение :

У нас есть:

  • Одна пара кроликов в начале первого месяца, которая спаривается в конце месяца
  • Две пары кроликов во втором месяце (первая пара и потомство)
  • Три пары кроликов в третьем месяце (первая пара, потомство первой пары с прошлого месяца и новое потомство)
  • Пять пар кроликов в четвёртом месяце (первая пара, первое и второе потомство первой пары, третье потомство первой пары и первое потомство второй пары)

Количество кроликов в месяц «n» = количеству кроликов прошлого месяца + количество новых пар кроликов, другими словами, вышеназванная формула: F n = F n-1 + F n-2 . Отсюда получается рекуррентная числовая последовательность (о рекурсии мы скажем далее), где каждое новое число соответствует сумме двух предыдущих чисел:

1 месяц: 1 + 1 = 2

2 месяц: 2 + 1 = 3

3 месяц: 3 + 2 = 5

4 месяц: 5 + 3 = 8

5 месяц: 8 + 5 = 13

6 месяц: 13 + 8 = 21

7 месяц: 21 + 13 = 34

8 месяц: 34 + 21 = 55

9 месяц: 55 + 34 = 89

10 месяц: 89 + 55 = 144

11 месяц: 144 + 89 = 233

12 месяц: 233+ 144 = 377

И эта последовательность может продолжаться бесконечно долго, но учитывая, что задачей является узнать количество кроликов по истечении года, получается 377 пар.

Здесь важно также заметить, что одним из свойств чисел Фибоначчи является то, что если сопоставить две последовательные пары, а затем разделить большую на меньшую, то результат будет двигаться по направлению к золотому сечению, о котором мы также скажем ниже.

Пока же предлагаем вам ещё две задачи по числам Фибоначчи:

  • Определить квадратное число, о котором известно только, что если отнять от него 5 или прибавить к нему 5, то снова выйдет квадратное число.
  • Определить число, делящееся на 7, но при условии, что поделив его на 2, 3, 4, 5 или 6 в остатке будет 1.

Такие задачи не только станут отличным способом развития ума, но и занимательным времяпрепровождением. О том, как решаются эти задачи, вы также можете узнать, поискав информацию в Интернете. Мы же не будем заострять на них внимание, а продолжим наш рассказ.

Что же такое рекурсия и золотое сечение?

Рекурсия

Рекурсия является описанием, определением или изображением какого-либо объекта или процесса, в котором есть сам данный объект или процесс. Иначе говоря, объект или процесс можно назвать частью самого себя.

Рекурсия широко используется не только в математической науке, но также и в информатике, массовой культуре и искусстве. Применимо к числам Фибоначчи, можно сказать, что если число равно «n>2», то «n» = (n-1)+(n-2).

Золотое сечение

Золотое сечение является делением целого на части, соотносящиеся по принципу: большее относится к меньшему аналогично тому, как общая величина относится к большей части.

Впервые о золотом сечении упоминает Евклид (трактат «Начала» прим. 300 лет до н.э.), говоря и построении правильного прямоугольника. Однако более привычное понятие было введено немецким математиком Мартином Омом.

Приблизительно золотое сечение можно представить в качестве пропорционального деления на две разные части, к примеру, на 38% и 68%. Численное же выражение золотого сечения равно примерно 1,6180339887.

На практике золотое сечение используется в архитектуре, изобразительном искусстве (посмотрите работы ), кино и других направлениях. На протяжении долгого времени, впрочем, как и сейчас, золотое сечение считалось эстетической пропорцией, хотя большинством людей оно воспринимается непропорциональным – вытянутым.

Вы можете попробовать оценить золотое сечение сами, руководствуясь следующими пропорциями:

  • Длина отрезка a = 0,618
  • Длина отрезка b= 0,382
  • Длина отрезка c = 1
  • Соотношение c и a = 1,618
  • Соотношение c и b = 2,618

Теперь же применим золотое сечение к числам Фибоначчи: берём два соседних члена его последовательности и делим большее на меньшее. Получаем примерно 1,618. Если же возьмём то же самое большее число и поделим его на следующее большее за ним, то получим примерно 0,618. Попробуйте сами: «поиграйте» с числами 21 и 34 или какими-то другими. Если же провести этот опыт с первыми числами последовательности Фибоначчи, то такого результата уже не будет, т.к. золотое сечение «не работает» в начале последовательности. Кстати, чтобы определить все числа Фибоначчи, нужно знать всего лишь три первых последовательных числа.

И в заключение ещё немного пищи для ума.

Золотой прямоугольник и спираль Фибоначчи

«Золотой прямоугольник» — это ещё одна взаимосвязь между золотым сечением и числами Фибоначчи, т.к. соотношение его сторон равно 1,618 к 1 (вспоминайте число 1,618!).

Вот пример: берём два числа из последовательности Фибоначчи, например 8 и 13, и чертим прямоугольник с шириной 8 см и длинной 13 см. Далее разбиваем основной прямоугольник на мелкие, но их длина и ширина должна соответствовать числам Фибоначчи – длина одной грани большого прямоугольника должна равняться двум длинам грани меньшего.

После этого соединяем плавной линией углы всех имеющихся у нас прямоугольников и получаем частный случай логарифмической спирали – спираль Фибоначчи. Её основными свойствами являются отсутствие границ и изменение форм. Такую спираль можно часто встретить в природе: самыми яркими примерами являются раковины моллюсков, циклоны на изображениях со спутника и даже ряд галактик. Но более интересно то, что этому же правилу подчиняется и ДНК живых организмов, ведь вы помните, что оно имеет спиралевидную форму?

Эти и многие другие «случайные» совпадения даже сегодня будоражат сознание учёных и наводят на мысль о том, что всё во Вселенной подчинено единому алгоритму, причём, именно математическому. И эта наука кроет в себе огромное количество совсем нескучных тайн и загадок.

Если посмотреть на растения и деревья вокруг нас, то видно, сколь много листьев на каждом из них. Издалека кажется, что ветки и листья на растениях расположены случайным образом, в произвольном порядке. Однако во всех растениях чудесным образом, математически точно спланировано какая веточка откуда будет произрастать, как ветки и листья будут располагаться около стебля или ствола. С первого дня появления растение в точности следует в своём развитии этим законам, то есть ни один лист, ни один цветок не появляется случайно. Ещё до появления растение уже точно запрограммировано. Сколько будет веток на будущем дереве, где вырастут ветки, сколько будет листьев на каждой ветке, и как, в каком порядке будут располагаться листья. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), в числе оборотов на стебле, в числе листьев в цикле проявляет себя ряд Фибоначчи, а стало быть, проявляет себя и закон золотого сечения.

Если вы зададитесь целью отыскать числовые закономерности в живой природе, то заметите, что эти числа часто встречаются в различных спиральных формах, которыми так богат мир растений. Например, черенки листьев примыкают к стеблю по спирали, которая проходит между двумя соседними листьями: полного оборота - у орешника, - у дуба, - у тополя и груши, - у ивы.

Семена подсолнечника, эхинацеи пурпурной и многих других растений, расположены спиралями, причем количества спиралей каждого направления - числа Фибоначчи.

Подсолнечник, 21 и 34 спирали. Эхинацея, 34 и 55 спиралей.

Чёткая, симметричная форма цветов также подчинена строгому закону.

У многих цветов количество лепесточков – именно числа из ряда Фибоначчи. Например:

ирис, 3леп. лютик, 5 леп. златоцвет, 8 леп. дельфиниум,


цикорий,21леп. астра, 34 леп. маргаритки,55леп.

Ряд Фибоначчи характеризует структурную организацию многих живых систем.

Мы уже говорили, что отношений соседних чисел в ряду Фибоначчи есть число φ = 1,618. Оказывается, что и сам человек – просто кладезь числа фи.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы.

M/m=1,618

Первый пример золотого сечения в строении тела человека:



Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.
Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения.

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.


Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.
Есть и другое, более прозаическое применение пропорций тела человека. Например, используя эти соотношения, криминальные аналитики и археологи по фрагментам частей человеческого тела восстанавливают облик целого.

Рекомендуем почитать

Наверх