Замкнутый цикл как форма хозяйствования в рамках промышленной экологии. Замкнутый технологический цикл

Реклама 24.09.2019
Реклама

Современное состояние экологической системы Земли приводит к различного рода усовершенствованиям и изменениям. Решение проблемы сохранения природных ресурсов, в том числе и водных, заключаетмся в создании и использовании безотходных сисетм производства. В основе безотходных технологий лежит принцип комплексного использования сырья и энергии. Также к моделям безотходного производства относят малоотходные принципы функционирования предприятий. Малоотходной называется такая технология, в которой по каким-то причинам не может быть реализована идеальная модель безотходного способа.


Основные отходы большинства предприятий - это отработанные воды с разной степенью загрязнения. Очистные сооружения предполагают изначально сбор, перевозку и затем очищение вод. Обычно при транспортировке и сборе отработанных вод происходит неизбежное смешение близких по своим свойствам и совершенно различных соединений, и это приводит к усложнению выделения нужных составляющих и очистки воды до нужного состояния. Иногда решение этой задачи остается невыполненным.

Сточные воды заводов химической промышленности изобилуют веществами одного лимитирующего признака вредности, которые проявляют мощное аддитивное действие. Поэтому действие очистных сооружений должно быть максимально направлено на то, чтобы снизить остаточное содержание отходов до нижнего порога допустимых концентраций. Это связано с серьезными капитальными и эксплуатационными затратами очистных сооружений.


Очистные сооружения, действующие по принципам механической, химической и биологической очистки сточных вод, не гарантируют уменьшения солесодержания в стоках, а иногда, в результате некорректной подготовки механизмов, эти концентрации существенно повышаются.


Создание замкнутых систем водоснабжения приводит к тому, что удельный расход испольсования свежей воды значительно снижается. На заводах химических волокон этот процесс проходит в два этапа. Первый этап заключается в мероприятиях, ведущих к снижению водопотребления без капитальных затрат. Второй же этап основывается на осуществлении этих мероприятий с помощью разнообразных очистных сооружений.


Создание замкнутых систем и соответствующих им очистных сооружений обусловлено тремя причинами: недостатком воды, снижением ассимилирующей способности у объектов, которые предназначены для приема промстоков и экономическими выгодами перед прямоточными системами водообеспечения.

Использование этих систем и соответствующих очистных сооружений позволяет выстраивать химические предприятия в районах с минимальными водными ресурсами, но приемлимыми с точки зрения экономико-географическими показателями.

ЗАМКНУТЫЙ ТЕХНОЛОГИЧЕСКИЙ ЦИКЛ

способ орг-ции технологич. схемы произ-ва (обогащения полезных ископаемых, гидрометаллургии, хим. технологии), при к-ром один или несколько (но не все) продукты технологич. операции возвращаются в предыдущую или в ту же операцию, обеспечивая полноту переработки исходного сырья.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "ЗАМКНУТЫЙ ТЕХНОЛОГИЧЕСКИЙ ЦИКЛ" в других словарях:

    Охватывает замкнутый воспроизводственный цикл от добычи природных ресурсов и профессиональной подготовки кадров до непроизводственного потребления. В рамках ТУ осуществляется замкнутый макропроизводственный цикл, включающий добычу и получение… … Словарь бизнес-терминов

    Технологический процесс - (Process) Определение технологического процесса, типы технологического процесса Определение технологического процесса, типы технологического процесса, правила процесса Содержание Содержание Определение. Понятие технологического процесса Основные … Энциклопедия инвестора

    Покрытия термодиффузионные цинковые (ТДЦ) Содержание 1 Определения 2 Защита металлов от коррозии … Википедия

    Содержание 1 Димитровградский завод тросов привода «Автопартнер» 2 История 3 Деятельность … Википедия

    Координаты: 59°57′28.98″ с. ш. 30°22′44.68″ в. д. / 59.9580507, 30.37908 … Википедия

    Средний бизнес - (Medium business) Определение среднего бизнеса, нюансы среднего бизнеса Информация об определении среднего бизнеса, нюансы среднего бизнеса Содержание Содержание О “Что делать” и “с чего начать” вот в чем вопрос! О пользе… … Энциклопедия инвестора

    система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

    Или АСУ комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике,… … Википедия

    Один из крупнейших советских писателей. Род. в Сосновке, степном хуторе Самарской губ. Воспитывался в семье отчима разорившегося помещика. Мать писательница, печаталась под псевдонимом Александры Бострем. Окончил Петербургский… … Большая биографическая энциклопедия

1

Проведен системный анализ возможностей и границ повторного использования материалов в рамках промышленной экологии. Дана классификация невозобновляемых материалов. Отражены направления использования отдельных классов невозобновляемых материалов. Рассмотрены критерии эффективности повторного использования материалов. Приведены структурные признаки замкнутого цикла. Охарактеризованы возможные формы замкнутого цикла. Показано значение замкнутого цикла для обеспечения устойчивого развития. Рассмотрена роль энергии в обеспечении замкнутого цикла. Исследовано сжигание как возможный процесс утилизации отходов. Показана двойственная (позитивная и негативная) роль технологий для обеспечения устойчивого развития. Определено значение инновационных технологий для успешного перехода к промышленной экологии. Сделан вывод о необходимости расширенного использования существующей и испытанной устойчивой техники; инноваций и разработки новой устойчивой техники.

промышленная экология

устойчивое развитие

замкнутый цикл

1. Дорохина Е.Ю., Огольцов К.Ю. К вопросу о концептуальном понимании промышленной экологии // Путеводитель предпринимателя. – 2012. – № 16. – С. 95–103.

2. Дорохина Е.Ю., Огольцов К.Ю. О возможных стратегиях устойчивого развития и промышленной экологии // Путеводитель предпринимателя. – 2013. – № 17. – С. 100–108.

3. Дорохина Е.Ю., Пантелеев С.С. К вопросу о трех столпах устойчивого развития // Научные труды SWorld. – 2012. – Т. 33, № 4. – С. 16–21.

4. Allen D.T. An Industrial Ecology: Material flows and engineering design. Department of Chemical Engineering, Universitiy of Texas – Discussion Paper Austin, 2003.

5. Cohen-Rosenthal E. Making sense out of industrial ecology: a framework for analysis and action// Journal of Cleaner Production, 12. Jg. (2004), H. 8-10, P. 1111–1123.

Закрытие оборота материалов путем возврата в производство или потребления остатков производственных процессов или отслуживших срок старых продуктов и утильсырья называется замкнутым циклом. Замкнутый цикл как экономическая деятельность имеет длительные исторические традиции.

Цель нашего исследования - системный взгляд на возможности и границы возвращения материалов в рамках перехода к промышленной экологии (ПрЭ). Это - значимая и пока не решенная по ряду причин проблема. Процессы замкнутого цикла сложно охватить одним взглядом, в частности, трудно разграничить замкнутый цикл и управление отходами. Хотя известны основные структурные признаки замкнутого цикла, понятие это настолько многогранно, что даже в ПрЭ оно определяется разными способами. Для ПрЭ важны все формы замкнутого цикла - повторное использование, другое применение - во всех их проявлениях, причем переходы между названными формами часто размыты. Собственно говоря, возможность повторного использования материалов в хозяйственном обороте является одной из основных необходимых предпосылок функционирования ПрЭ. Подсмотренное у природы свойство - способность разбирать сложные материалы на их исходные компоненты для нового использования последних . При этом необходимо выяснить, какие формы замкнутого цикла играют существенную роль, и какие встречаются приложения. Различают 3 класса невозобновляемых материалов (см. таблица).

Классификация невозобновляемых материалов

Эта классификация относительна, так как технические возможности и экономические условия постоянно меняются, и участникам процессов не всегда известно, к какому классу относится материал.

Переход к ПрЭ требует, во-первых, увеличения использования в промышленных производственных процессах материалов из классов I и II, во-вторых, избегания материалов из класса III, в-третьих, нахождения путей компенсации незаменимых материалов из класса III с помощью инноваций в классах I и II. Разумеется, в классе III речь идет, прежде всего, о сильно диссипативных материалах, которые при применении рассеиваются в окружающей среде. Границы их повторного использования определяются лишь законами термодинамики, но с увеличением их применения необходимые издержки стремятся к бесконечности.

Экономическую границу замкнутого цикла разных материалов обуславливает отношение доли привлекательного сырья в природных материалах к его доле во вторичных материалах. Чем меньше эта величина, тем выгоднее обратное получение. При отношении существенно большем единицы замкнутый цикл представляет собой экономически невыгодную форму получения сырья . В конечном счете, все зависит от плотности сырья в первоначальном материале, которая имеет тенденцию к сокращению. С другой стороны, считается, что с уменьшением концентрации вновь обретаемого сырья во вторичных материалах экспоненциально растут затраты энергии для обратного получения.

Эмпирически доказано, что еще не израсходован экономический потенциал повторного использования тяжелых металлов, представляющих собой опасные отходы (hazardous waste). Однако ему противостоят диссипативные потери экотоксических субстанций, концентрация которых в экосфере во многих случаях повышается. Так как использование тяжелых металлов в ходе индустриализации непрерывно росло, то диссипативные потери постепенно приобретали все большее значение. Хотя не все экотоксические последствия и критические концентрации известны, но, начиная с их определенных уровней, можно ожидать значительных нарушений в окружающей среде.

Мы видим большой потенциал в освещении приложений ПрЭ, так как недостаток информации и правовых норм ограничивают инициативы даже по их экономически выгодному применению. Против использования невозобновляемых материалов III класса есть две причины: безвозвратное использование и истощение соответствующих материалов; токсические последствия для экосистем.

Вместе с тем может быть только один путь, реализуемый последовательно всеми заинтересованными лицами. Это путь, ведущий в направлении ПрЭ, т. е. к тому, чтобы все высоко диссипативные материалы соответствовали бы критерию непротиворечивости окружающей среде . Ждать до тех пор, когда технический прогресс позволит замкнуть оборот материалов, когда ресурсы станут настолько дорогими, что не будет никакого иного пути, было бы выражением неуместной инертности имеющихся промышленных систем. Каждая ступень и каждый элемент ПрЭ требует активного подхода. Можно выделить следующие ступени замкнутого цикла:

Непосредственный замкнутый цикл (в пределах того же самого производственного процесса);

Опосредованный замкнутый цикл (в пределах того же самого производственного процесса при временнoм или пространственном переносе);

Интегрированный замкнутый цикл (комбинация из обоих вышеназванных образований при дополнительном включении конструктивных элементов или блоков производственного процесса);

Системно-интегрированный замкнутый цикл (комбинация интегрированных в процесс внутренних положений замкнутого цикла с внешними, реализуемыми на другом предприятии производственными процессами).

При этом необходимо обеспечить, чтобы вторичные продукты использовались как можно раньше и в ближайшем регионе. Это даст экономические преимущества, связанные с уменьшением транспортных расходов и расходов по хранению. Чем выше стоимость вновь используемых благ, тем сильнее становится последний аспект.

Для ПрЭ требуется концепция, которая обобщает все формы замкнутого цикла в холархическую систему. Кроме того, нужны новые технологии возвращения материалов, продолжающие дело надежных и давно известных замкнутых циклов металлов, стекла и бумаги. При этом речь идет о материалах, для которых, вследствие их относительно простой химической и механической разделимости, уже теоретически возможен замкнутый цикл. Разумеется, даже в уже реализуемых кругооборотах материалов еще имеются нерешенные проблемы с примесями и недостаточной чистотой вторичных материалов, препятствующие более полному повторному использованию материалов. Например, в случае металлов, приобретающих специфические свойства при легировании, смешивание в ходе замкнутого цикла приводит к регулярному снижению качества вторичных материалов. Заметим, что металлы, как раз, характеризуются хорошей приспособляемостью к замкнутому циклу. Регулярно появляющиеся примеси при каждом кругообороте накапливаются во вторичном сырье и уменьшают его чистоту, что фактически соответствует даунциклингу. В рамках ПрЭ можно расширить границы управления циркуляцией, так как постепенно разрабатываются новые технические и организационные процессы очистки для тех циркуляций материалов, в которых этот феномен раньше не встречался. В перспективе это станет возможным в существенно большем объеме, так как и природное сырье характеризуется смесями материалов, которые затем разделяются посредством технологических процессов. Тем не менее, для функционирования ПрЭ неизбежна ориентация на замыкание циклов используемых в производстве материалов. При этом будет играть существенную роль «проектирование окружающей среды» (Design for Environment). При ПрЭ доля замкнутого цикла в производстве стремится к 1, так как это - целевое значение, устанавливаемое природой как «образцом». В любом случае это значение может быть достигнуто только в долгосрочной перспективе, так как многие материалы при нынешних замкнутых циклах теряют в качестве, и применимое сырье можно получить только при добавлении новых материалов.

Замкнутый цикл и энергия

Значение замкнутого цикла для устойчивой экономики можно оценить, анализируя следующие основные принципы, предлагаемые экологией:

а) все применимые невозобновляемые ресурсы должны повторно использоваться, пока это возможно;

б) отношение энергии, используемой для производства и потребления продуктов, и энергии, расходуемой для повторного предоставления сырья, должно быть изменено в пользу замкнутого цикла (т.е. доля энергии в замкнутом цикле в общеэкономическом потреблении энергии существенно увеличится);

в) невозобновляемые ресурсы могут быть введены в циркуляцию только в таком объеме, в каком для этого имеется регенеративная энергия, непригодная для других форм использования;

г) экономика потребления должна признаваться экономически равноценной экономике производства, так как создание там добавленной стоимости представляет собой существенную основу для производства.

Предпосылкой выполнения этих правил является то, что в долгосрочном периоде в распоряжении будут находиться исключительно возобновляемые энергоносители и в единицу времени - лишь ограниченное количество энергии. Вытекающие отсюда ограничения по использованию энергии в индустриальном обществе должны быть операционализированы с помощью критериев устойчивости . Пункты б) и в) показывают, что это вызывает проблему распределения. Если ограниченный ресурс «энергия» не теряется, как это было до сих пор, при нежелательной диссипации веществ в процессах производства и потребления, а направляется на возвращение сырья, то становится очевидным, что прежние способы производства эксплуатировали основы своего собственного существования с двух сторон: сырьевой и энергетической. Если обе стороны теперь рассматривать с энергетической точки зрения и их использование подчинить естественным ограничениям, то доступность энергии станет в конечном итоге самым узким местом промышленных процессов. Если привлекаться в хозяйственный оборот или связываться в продуктах должно большее количество материалов, то должно использоваться больше дефицитной энергии. Как утверждает экология, с возрастанием использования биомассы увеличивается расход энергии по техническому обслуживанию и ремонту. То есть, переход к ПрЭ не может пройти безрезультатно для объема и качества, как промышленного производства, так и массового потребления. Хотя эффективность и состоятельность (непротиворечивость) необходимы для жизнеспособной экономики, но без выполнения условий существования они не являются целевыми характеристиками. Технология, порождающая материальные и энергетические потоки, будет играть решающую роль при переходе к устойчивому развитию. Таким образом, неизбежно, что уже при планировании и конструировании продуктов следует принимать во внимание способность применяемых материалов к замкнутому циклу, и, кроме того, возможность применения бoльшего количества вторичных материалов. Это означает не что иное, как полное обновление способов производства при постоянном учете требований ПрЭ. Если речь идет о возвращения материалов в экономическую циркуляцию, то необходимо решение многокритериальной задачи, учитывающей, с одной стороны, соотношение между экономическими издержками и экологическими последствиями, а, с другой стороны, качество вновь обретаемых материалов и их экономическую эффективность. Термодинамика указывает на то, что энергетические затраты (и соответственно издержки) растут с уменьшением доли обратного получения и снижением качества вторичного сырья. Связь выражается следующим образом. Чем меньше плотность материала, предназначенного для повторного использования, тем дороже его концентрирование до приемлемой меры, поскольку это влечет за собой непропорциональное использование энергии. Тем не менее, этот процесс требует подробного анализа. Если на экологическом уровне рассматривать условия повторного и дальнейшего применения материалов, то на 5 ступенях трофики от первоначального производителя к первичному, вторичному и третичному потребителям, а также деструентам, можно видеть относительно возрастающую потерю энергии в форме излучаемого, т.е. неполезного тепла. Для перехода к ПрЭ потери энергии от одной до другой ступени потребления нужно описывать нормативными методами, учитывающими природно-экологические принципы. Сейчас сложно определить, какие именно процессы замкнутого цикла из-за чрезмерного использования энергии будут оказывать отрицательное влияние на устойчивое развитие, т.е. на «прочность» экосистемы. В обозримом будущем энергия солнца все-таки будет излучаться в экосистему Земли, поэтому узкими местами будут сохранение невозобновляемых материалов и устранение из природного кругооборота веществ, чуждых природе. Отрицательная экологическая «стоимость» потери материала не может превосходить стоимости экологических последствий предоставления энергии. Или, иначе выражаясь, в отношении устойчивости оптимальными являются такие антропогенные процессы замкнутых циклов, при которых предотвращенная отрицательная стоимость (окончательной) потери материала сопоставима со стоимостью предоставления необходимой для процесса (регенеративной) энергии. Проблема «оценки» на основе этого простого правила еще не решена.

Сжигание как стратегия утилизации отходов

Сжигание материалов, неинтегрируемых более в хозяйственный оборот, некоторыми специалистами называется «тепловым применением» и также считается формой замкнутого цикла. С точки зрения термодинамики, этого не может быть, так как сожженные материалы содержат негэнтропию (отрицательную энтропию), но при сгорании или производят энтропию в форме диссипации или, в лучшем случае, полезное тепло . Полученная тепловая энергия (которая, с точки зрения энтропии, представляет собой обесцененный вид энергии) сопоставляется с энергией, заключенной в сожженных (и диссипируемых) материалах. Последняя по своей значимости многократно превышает извлеченное тепло. Сжигание ранее применяемых, но по разным причинам утративших свою полезность, материалов согласно термодинамике является убыточным делом, поэтому не может относиться к методам замкнутого цикла и в рамках ПрЭ должно быть исключением. Оно представляет собой вынужденную меру при отсутствии фантазии и творческого подхода. Только в единичных случаях, которые следует тщательно проверять, сжигание может стать устойчивым решением, оставаясь в целом исключением. Процессы замкнутого цикла требуют адекватной технологии, учитывающей экономические, экологические и социальные интересы. В частности, при нынешних условиях экономические и экологические оптимумы технологических процессов находятся далеко друг от друга и, несомненно, требуют сближения. Известно, что создание мощностей по сжиганию требует высоких капитальных вложений, поэтому некоторые слои общества могут быть заинтересованы в их строительстве. При этом многие зависимости (экологические, социальные) недооцениваются. Отвергаются пути использования, которые могли бы составить конкуренцию сжиганию.

Значение инновационных технологий для обеспечения устойчивого развития

Технология как продукт культурной эволюции человечества при переходе к ПрЭ приобретает большое, если не решающее, значение. Технология играет ключевую роль для преобразования социально-экономических процессов в рамках ПрЭ. Технические инновации явились ядром индустриализации и следующего за ней экономического развития. При этом роль их двояка. Каждая новая технология только тогда становится успешной, когда присоединяемая к ней человеческая составляющая положительно корреспондирует с техникой, т. е. они способны к соединению. В этом случае новая технология может широко распространиться. Такой процесс называется диффузией технологии.

Технология, напротив, может стать и препятствием для перехода к ПрЭ, так как при высоких инвестициях возникают теневые зависимости.

Исторически культурную и технологическую эволюцию можно разделить на 3 крупных фазы: общество охотников и собирателей, аграрное общество и индустриальное общество. В ходе культурно-технологической эволюции из-за использования новых технологий непрерывно увеличивалось антропогенно вызванное потребление энергии и сырья. Идеализированное мнение многих экологов состоит в том, что устойчивой опцией будущего является отказ от технологии (в общем смысле), так как технология представляет собой главное звено, обусловливающее экологический кризис.

Заключение

На наш взгляд, динамика технологического развития является решающим элементом при переходе к ПрЭ. Антропогенное преобразование природных систем уже настолько продвинулось, что технологии и их действие на окружающую среду стали неотъемлемой частью планеты Земля. Жизнь как феномен возникла и поддерживается путем интеграции материи и энергии. Антропогенно-культурное развитие неотъемлемо связано с экологическим развитием. Первое возможно только путем преобразования материи на основе использования энергии. И окончательное решение этой задачи взяла на себя технология, которая должна приспосабливаться к вновь возникающим требованиям устойчивого развития. Вид и форма использование старой и, прежде всего, новой техники зависит от креативности участвующих лиц и общих экономических условий. В конечном счете, внедрение технических изобретений определяется экономическим эффектом, который они обеспечивают инвесторам. Инвесторы опять-таки зависят от системы стимулирования. Новая культурная организация материи всегда будет связана с технологией, так как только технология запускает феноменальные материальные и энергетические потоки. Таким образом, технологии соответствуют две стратегических опции: возрастающее использование существующей и испытанной устойчивой техники; инновации и разработка новой устойчивой техники.

Библиографическая ссылка

Дорохина Е.Ю. ЗАМКНУТЫЙ ЦИКЛ КАК ФОРМА ХОЗЯЙСТВОВАНИЯ В РАМКАХ ПРОМЫШЛЕННОЙ ЭКОЛОГИИ // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 8-5. – С. 772-776;
URL: https://applied-research.ru/ru/article/view?id=10167 (дата обращения: 22.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Д.х.н. Н.Д. Чичирова, профессор, директор «Института теплоэнергетики», зав. кафедрой «Тепловые электрические станции»,
д.х.н. А.А. Чичиров, профессор, зав. кафедрой «Химия»,
С.С. Паймин, аспирант кафедры «Тепловые электрические станции», ФГБОУ ВПО «КГЭУ», г. Казань;
к.т.н. А.Г. Королёв, начальник Производственно-технического отдела, ОАО «ТГК-16», г. Казань;
к.т.н. Т.Ф. Вафин, инженер, ОАО «Генерирующая компания», г. Казань

Введение

К числу наиболее значимых направлений стратегического развития большинства отечественных ТЭС относятся разработки, позволяющие минимизировать количество сбросов сточных вод, образующихся в технологическом процессе производства тепловой и электрической энергии, за счет создания малоотходных и безотходных схем водопользования, а также усовершенствования многих существующих технико-экономических решений по обработке воды.

Реализация концепции создания экологически безопасной ТЭС возможна по двум направлениям.

Первое направление основано на разработке и внедрении экономичных и экологически совершенных технологий подготовки добавочной воды парогенераторов и подпиточной воды теплосети. В этом аспекте разработка эффективных технологических схем водоподготовки на ТЭС с сохранением базисного оборудования является наиболее перспективным направлением, отвечающим поставленным требованиям, в особенности там, где речь идет о расширении и реконструкции функционирующих установок.

Второе направление связано с разработкой и внедрением технологий максимально полной переработки и утилизации образующихся сточных вод с получением и повторным использованием в цикле станции исходных химических реагентов .

Рассмотрим результаты, которые удалось достигнуть за счет проведения комплекса мероприятий по совершенствованию технологии во- доподготовки Казанской ТЭЦ-3 .

Реконструкция установки химического обессоливания

Построена по проекту 1960-х гг., который не предусматривал бессточных или малосточных и экологически безопасных схем. При ежегодном потреблении от 9,5 до 11,5 млн т технической воды, согласно проекту, происходил сброс до 4-5 млн т минерализованных сточных вод после их нейтрализации через систему промышленно-ливневой канализации в р. Казанка и далее в Волгу.

Принципиальная схема водоподготовки, реализованная на Казанской ТЭЦ-3, представлена на рис. 1.

В систему подготовки воды поступают компоненты, содержащиеся в продувочной воде системы оборотного охлаждения, а также реагентах: сернокислом железе, извести, серной кислоте, едком натре и хлориде натрия. В процессе известкования и коагуляции воды в осветлителях из системы выводится часть этих компонентов в виде шлама, содержащего карбонат кальция, гидроксиды магния и железа, кремнекислые и органические соединения. Кроме того, часть компонентов выводится с подпиточной водой теплосети.

Основной задачей проводимых на станции мероприятий явилось максимальное сокращение количества используемых реагентов, обработка и утилизация сточных вод.

В 2001 г. на Казанской ТЭЦ-3 внедрена новая экологически чистая и ресурсосберегающая технология химического обессоливания воды. Данная технология была разработана в Азербайджанском инженерно-строительном университете применительно к условиям Казанской ТЭЦ-3, с учетом требований, предъявляемых к охране окружающей среды и рациональному использованию природных ресурсов .

Согласно новой технологии изменился режим химического обессоливания известково- коагулированной воды на установке, а также технологии регенерации как в Н-, так и ОН-ионитных фильтрах (рис. 2).


Рис. 2. Цепочка фильтров химического обессоливания:

НОВ - насосы очищенной воды; Н пред, Н осн - предварительный и основной Н-катионитный фильтр; А 1 , А 2 - анионитовые фильтры первой и второй ступени; Н 2 - Н-катионитный фильтр второй ступени; Д - декарбонизатор; БДВ - бак декарбонизованной воды.

Изменение режима химического обессоливания предусматривало предварительное умягчение обессоливаемой воды в предвключенном Н-катионитном фильтре. Для перевода катионита в этом фильтре на Na-форму использовались концентрированные порции отработанного регенерационного раствора Н- и ОН-фильтров.

Улучшение экономических и экологических показателей ионирования было достигнуто применением двухпоточно-противоточной технологии регенерации ионитных фильтров.

Для реализации данной технологии была произведена реконструкция схемы регенерации цепочки химического обессоливания № 5 с установкой в Н осн -, Н 2 - и А 2 - фильтрах среднего распределительного устройства.

Суть регенерации анионитовых фильтров «цепочки» заключается в следующем. Подаваемый в анионитовый фильтр второй ступени регенерационный раствор щелочи разделяется на два потока. Один из потоков подается сверху, другой снизу. Отработанный раствор щелочи после анионитового фильтра первой ступени собирается в бак щелочных вод для повторного использования в последующих регенерациях.

Регенерация Н осн - и Н 2 - фильтров «цепочки» осуществляется раздельно, независимо друг от друга по двухпоточно-противоточной технологии. Регенерационный раствор кислоты полностью пропускается через нижние части этих фильтров по направлению снизу вверх. Регенерация верхней части катионитной загрузки, расположенной выше среднего распределительного устройства, в этих фильтрах осуществляется отработанным раствором кислоты из бака кислых вод.

Экономическая эффективность достигается за счет экономии химических реагентов, используемых для регенерации фильтров, снижения расхода воды на собственные нужды химводоочистки, снижения затрат на приготовление известково-коагулированной воды, снижения потребления сырой волжской воды и объема сбросных сточных вод.

В результате внедрения новой технологии химического обессоливания воды были получены следующие данные:

■ расход воды на собственные нужды снизился с 36,3 до 26,4%;

■ удельный расходы кислоты на регенерацию Н-фильтров снизился на 3,5 г/г-экв и составил 123,4 г/г-экв;

■ удельный расход щелочи на регенерацию ОН-фильтров снизился на 10,6 г/г-экв и составил 63,2 г/г-экв;

■ снижение расхода извести и коагулянта в осветлителе в результате уменьшения расхода обессоленной воды на собственные нужды составило 64,2 и 25,7 т, соответственно.

При этом выработка обессоленной воды существенно не менялась, оставаясь в среднем на уровне 2,8-3 млн т/год.

Внедрение метода термического обессоливания

Параллельно с проводимыми работами по реконструкции установки химического обессоливания внедрялась технология приготовления обессоленной воды методом термического обессоливания .

В соответствии с проектом, выполненным в 1980-х гг, на станции сооружены две шестиступенчатые испарительные установки, укомплектованные испарителями типа И-600. Проектная производительность каждой установки по 100 т/ч. В конце 1990-х гг эти установки были пущены в эксплуатацию. Однако проектная производительность не была достигнута из-за избыточного пара последних ступеней установки, который не мог быть полностью использован в технологической схеме, т.к. сама установка была смонтирована в отдельно стоящем здании, удаленном от основного технологического оборудования, использующего пар таких параметров. В результате, в летний и переходный периоды времени испарители останавливали или переводили в режим работы со сбросом избыточного пара (до 10 т/ч) в атмосферу. Такая работа установок негативно отражалась на технико-экономических показателях испарителей, и в 2000 г. было принято решение о сооружении на базе действующей испарительной установки термообессоливающего комплекса производительностью 300-350 т/ч. Комплекс включает в себя две существующие шестиступенчатые испарительные установки, два испарителя мгновенного вскипания типа ИМВ-50 с глубоковакуумными многокамерными деаэраторами.

В ИМВ используется избыточный пар испарительных установок (до 6 т/ч на каждый испаритель), при этом суммарно дополнительно вырабатывается до 100 т/ч дистиллята с двух ИМВ. Разработанные ИМВ полностью адаптированы к условиям комплекса.

Указанные решения позволили обеспечить оптимальное использование пара разного давления в тепловой схеме комплекса. Например, исходный пар производственного отбора давлением 13 ата используется в качестве греющего для первого испарителя И-600, избыточный пар многоступенчатой испарительной установки давлением 1,2 ата - для ИМВ, а пар последней ступени ИМВ давлением 0,12 ата - в вакуумном деаэраторе.

При совершенствовании комплекса, направленном на повышение его экономичности и надежности за счет совершенствования системы регенерации тепла испарительных установок, в существующую схему были дополнительно включены пароводяные и струйно-барботажные подогреватели. Это позволило увеличить температуру дистиллята и, как следствие, снизить удельный расход тепловой энергии на его производство (рис. 3). Данный показатель является важнейшей характеристикой экономичности установки термического обессоливания.

В настоящее время выработка дистиллята покрывает практически 50% потребности станции в обессоленной воде.

Обеспечивая требуемые нормы качества воды, применяемой для подпитки котлов с давление перегретого пара 140 ата, технология термического обессоливания имеет значительно более низкие значения расходов воды на собственные нужды по сравнению с химическими методами (9 и 28% соответственно).

Экономическая эффективность при замещении традиционного химического способа водоподготовки термическим достигается также за счет сокращения расхода химических реагентов.

Следует отметить, что в рассматриваемый период по аналогии с реконструкцией цепочки химического обессоливания № 5 были проведены работы по улучшению технико-экономических показателей цепочек № 6 и № 7.

За счет проведения реконструкции цепочек № 6 и № 7 и автоматизации технологического процесса удалось дополнительно снизить в целом по ТЭЦ значения удельных расходов кислоты (со 110,6 до 91,9 г/г-экв) и щелочи (с 62,7 до

60,4 г/г-экв).

Утилизация сточных вод водоподготовительной установки

Опыт создания малоотходных водоподготовительных комплексов показывает, что основная часть кальция и магния, содержащихся в стоках, может быть выведена в виде твердых осадков, пригодных для последующего использования, либо длительного безопасного хранения. В результате в сточных водах остаются в основном соединения натрия, в первую очередь, его сульфаты и хлориды . В этой связи при разработке схемы утилизации сточных вод водоподготовительной установки Казанской ТЭЦ-3 принята концепция максимального использования солей натрия, содержащихся в сточных водах, что позволило снизить затраты на привозной хлорид натрия.

Следует также учитывать, что количество и состав сточных вод водоподготовительной установки зависит от ее производительности, состава исходной воды и удельных расходов реагентов на регенерацию. Именно при химическом обессоливании в систему водоподготовительной установки вводится основное количество натрия в виде NaOH и сульфатов в виде серной кислоты. При этом основную проблему представляет едкий натр. В этой связи при оптимизации режима эксплуатации установки химического обессоливания максимальное внимание уделяется сокращению расхода едкого натра. Избыток серной кислоты менее опасен, т.к. при нейтрализации известью основная часть сульфатов выводится в осадок в виде гипса.

При работе установки утилизации сточных вод в зимний период образуется около 6,1 т/сут. гипсового шлама (при 30%-й влажности). В летний период количество влажного шлама уменьшается до 2,7 т/сут. За год образуется около 1600 т влажного или 1200 т сухого шлама. Основным компонентом шлама является гипс - 90-95%. Содержание гидроксида магния составляет 4-5%, карбоната кальция - 1,52%. Этот шлам может быть использован для получения гипсового вяжущего высокого качества и других целей.

При определении экономического эффекта от внедрения установки утилизации сточных вод учитывалось снижение платы за количество используемой исходной воды и сброс сточных вод.

При неизменном производстве внедренные на станции технологии позволили добиться существенного снижения потребления технической воды с 11330 тыс. м 3 в 2003 г. до 6958 тыс. м 3 в 2009 г. Немаловажен тот факт, что в рассматриваемый период стоимость исходной воды возросла в 11 раз.

Наряду со снижением водопотребления удалось добиться снижения сброса промышленных сточных вод (рис. 4), основную долю которых составляют сточные воды химического цеха. Применение современных способов водоподготовки позволило существенно снизить и массу загрязняющих веществ в сточных водах (рис. 5). За счет снижения сброса загрязняющих веществ плата за этот сброс также снизилась (рис. 6).

Технологии на основе электромембранных аппаратов

В продувочной воде испарительной установки содержится весь натрий, поступивший с исходной водой и введенный с едким натром при регенерации фильтров химобессоливающей установки, хлориды, введенные с исходной водой, а также небольшая часть сульфатов, введенных с исходной водой, коагулянтом и серной кислотой при регенерации фильтров.

Следует обратить внимание на высокое содержание щелочи и щелочных компонентов (карбонат натрия) в продувке. Щелочь и сода - дорогостоящие продукты, которые широко используются на водоподготовительных установках ТЭС. Отметим также практически полное отсутствие ионов жесткости. В связи с чем была сформулирована идея разделения продувочной воды на щелочной и умягченный растворы и их использования в цикле станции .

Для утилизации избытка продувочной воды испарителей разработана технология с использованием в качестве основного элемента элект- ромембранных аппаратов (ЭМА) (рис. 7) .

На первой ступени происходит частичное отделение щелочи от исходного раствора в ЭМА с катион- и анионообменными мембранами. Поскольку селективность процесса невысока, в качестве продукта возможно получение щелочного раствора, содержащего соли исходного раствора.

На ЭМА первой ступени получается концентрированный щелочной раствор и дилюат-1. Последний представляет собой более разбавленный раствор исходных солей и оставшейся щелочи. Дилюат-1 является исходным раствором для ЭМА второй ступени.

ЭМА второй ступени собран с биполярными мембранами и служит для разделения раствора солей на щелочной и кислый растворы. В качестве продуктов на второй ступени образуется дилюат-2, представляющий собой более разбавленный раствор исходных солей, неконцентрированные растворы щелочи и смеси кислот.

Дилюат-2 направляется на ЭМА третьей ступени, щелочной раствор - на концентрирование в первую ступень или в ЭМА-концентратор щелочи. Кислый раствор, содержащий смесь серной, соляной и азотной кислот, направляется потребителю.

На ЭМА третьей ступени осуществляется процесс концентрирования-обессоливания дилюата-2 с получением частично обессоленной воды с концентрацией солей примерно 0,3 г/л (дилюат-3) и концентрата.

В схеме (рис. 7) используются три аппарата с суммарным потреблением электроэнергии 100 кВт.ч на 1 тонну обрабатываемого раствора. В результате обработки образуется 0,4 т щелочного раствора (5% щелочи, 1% солей) и 0,6 т кислого раствора (1,2% кислот, 1% солей). Представленная схема достаточно гибкая. Возможно последовательное сокращение ступеней, начиная с последней.

Если убрать третью ступень ЭМА, частично обессоленную воду для второй ступени можно забирать с ВПУ ТЭС. Эквивалентное количество воды в виде дилюата-2 (раствор натриевых солей) направляется на подпитку теплосети. Таким образом происходит обмен водой между водоподготовительной и электромембранной установками.

При сокращении третьей и второй ступеней одновременно, на ЭМА первой ступени возможно получение щелочного раствора и дилюата-1. Щелочной раствор отправляется на концентрирование или непосредственно потребителю. Дилюат-1 (солевой раствор) можно использовать на регенерацию Na-катионитных фильтров, на подпитку теплосети или подпитку испарителей.

В схеме на рис. 8 используются два ЭМА с суммарным потреблением электроэнергии 13 кВтч на 1 тонну обрабатываемого раствора . Продуктами переработки продувочной воды испарителей в этом случае являются 0,1 т щелочного раствора (4% щелочи, 2% солей) и 1 т солевого раствора (2,5% исходных солей).

Сравнительно невысокие эксплуатационные затраты делают наиболее целесообразным использование схемы, указанной на рис. 8, для утилизации продувочной воды испарителей с получением концентрированного щелочного и умягченного солевого растворов, которые используются в технологическом цикле станции .

Выводы

1. На Казанской ТЭЦ-3 внедрена новая технология переработки жидких отходов водоподготовительной установки с получением и повторным использованием в цикле станции умягченного солевого и щелочного растворов.

2. Создан замкнутый цикл, обеспечивающий бессточность технологии водоподготовки ТЭС.

3. Результаты исследований, а также разработанные схемы могут быть использованы при создании малоотходных комплексов водопользования как на существующих ТЭС и других производствах в процессе их реконструкции, так и при сооружении новых.

Литература

1. Абрамов А.И., Елизаров Д.П., Ремезов А.Н. и др. Повышение экологической безопасности тепловых электростанций: Учеб. пособие для вузов / Под ред. А.С. Седлова. М.: Издательство МЭИ, 2001. 378 с.

2. Ларин Б.М., Бушуев Е.Н., Бушуева Н.В. Технологическое и экологическое совершенствование водоподготовительных установок на ТЭС // Теплоэнергетика. 2001. №8. С. 23-27.

3. Чичирова Н.Д., Чичиров А.А., Королёв А.Г., Вафин Т.Ф. Экологическая и экономическая эффективность внедрения ресурсосберегающих технологий на тепловых электрических станциях // Труды Академэнерго. 2010. № 3. С. 65-71.

4. Седлов А.С., Шищенко В.В., Федосеев Б.С., Потапкина Е.Н. Выбор оптимального метода водоподготовки для тепловых электростанций // Теплоэнергетика. 2005. №

5. Седлов А.С., Шищенко В.В., Фардиев И.Ш., Закиров И.А. Комплексная малоотходная ресурсосберегающая технология подготовки воды на Казанской ТЭЦ-3 // Теплоэнергетика. 2004. № 12. С. 19-22.

6. Фардиев И.Ш., Закиров И.А., Силов И.Ю., Галиев И.И., Королёв А.Г., Шищенко В.В., Седлов А.С., Ильина И.П., Сидорова С.В., Хазиахметова Ф.Р. Опыт создания комплексной малоотходной системы водопользования на Казанской ТЭЦ-3 // Новое в Российской электроэнергетике. 2009. № 3. С. 30-37.

7. Фейзиев Г. К. Высокоэффективные методы умягчения, опреснения и обессоливания воды. М.: Энергоиздат, 1988.

8. Фейзиев Г.К., Кулиев А.М., Джалилов М.Ф., Сафиев Э.А. Пути создания высокоэффективных схем бессточного обессоливания воды химическими методами // Химия и технология воды. 1984. № 1. С. 68-71.

9. Седлов А.С., Шищенко В.В., Ильина И.П., Потапкина Е.Н., Сидорова С.В. Промышленное освоение и унификация малоотходной технологии термохимического умягчения и обессоливания воды // Теплоэнергетика. 2001. № 8. С. 28-33.

10. Хазиахметова Д.Р., Шищенко В.В. Обработка и утилизация минерализованных сточных вод химобессоливаю- щихустановок//Теплоэнергетика. 2004. № 11. С. 66-70.

11. Седлов А.С., Шищенко В.В., Сидорова С.В., Ильина И.П., Ларюшкин Н.И., Егоров С.А. Опыт освоения малоотходной технологии водоподготовки на Саранской ТЭЦ-2// Электрические станции. 2000. № 4. С. 33-37.

12. Чичирова Н.Д., Чичиров А.А., Ляпин А.И., Королёв А.Г., Вафин Т.Ф. Разработка и создание ТЭС с высокими экологическими показателями // Труды Академэнерго. 2010. № 1. С. 34-44.

13. Чичирова Н.Д. Электромембранные технологии в энергетике: монография/Н.Д. Чичирова, А.А. Чичиров, Т.Ф. Вафин. - Казань: Казан. гос. энерг. ун-т, 2012. 260 с.

14. Вафин Т.Ф., Королёв А.Г., Чичирова Н.Д., Чичиров А.А. Внедрение электромембранной технологии для очистки стоков Казанской ТЭЦ-3 // Материалы докладов VII Школы-семинара молодых ученых и специалистов под руководством академика РАН В.Е. Алемасова. Казань. 2010. С. 434-436.

15. Патент на полезную модель РФ № 121500. Установка для переработки промышленных сточных вод и получения концентрированного щелочного раствора и умягченного солевого раствора / Т.Ф. Вафин, А.А. Чичиров. Опубл. 27.10.2012, Бюл. № 30.

16. Вафин Т.Ф., Королёв А.Г. Электродиализная установка для утилизации сточных вод ВПУ ТЭС и генерации щелочи // Материалы докладов V Международной молодежной научной конференции «Тинчуринские чтения». Казань, КГЭУ. 2010. Т.2. С. 167-168.

17. Чичирова Н.Д., Чичиров А.А., Вафин Т.Ф., Ляпин А.И. Технико-экономическая оценка эффективности использования электромембранных технологий на отечественных ТЭС // Известия высших учебных заведений. Проблемы энергетики. 2013. № 3-4. С. 14-25.

В вопросах воздействия на экосистему, экономику и общество актеры первого плана — это деградация окружающей среды и изменение климата. По данным ООН, к 2030 году население Земли достигнет отметки в восемь с половиной миллиардов людей. А к середине века более половины населения планеты станет проживать в городах. Значит, если среда не будет адаптирована под растущую популяцию, экологические условия проживания в мегаполисах продолжат стремительно ухудшаться.

Фото: pixabay/diegoxue

Что с этим делать? Внедрять и развивать в городах экономику замкнутых циклов, уверены исследователи из Технологического института Блекинге в шведском городе Карлскроне. Они выпустили отчет «Циклическая экономика: опыт городов по всему миру» , в котором проанализировали различные городские проекты, связанные с циклической экономической моделью. В поле зрения экспертов попал 21 город в США, Англии, Нидерландах, Швеции и других странах. Исследователи описали проекты, которые были финансово поддержаны муниципалитетами, и то, какие выгоды эти инициативы принесли городу.

Экономика замкнутых циклов — это подход, при котором в производство возвращается все то, что раньше считалось ненужным и отправлялось на захоронение в рамках следования линейной экономической модели «произвел — потребил — выбросил». Специалисты Технологического института Блекинге отметили, какие департаменты городской администрации были задействованы в реализации инициатив, и какую пользу, в конечном счете, подобные проекты приносят городам и их жителям.

Из отходов — в нужные вещи

Городские власти способны регулировать ситуацию с отходами в городе и использовать рынок для их полезного применения. Так, например, исследователи отметили в отчете успешный проект торгового центра ReTuna в Швеции, где вся продукция в магазинах — это использованные вещи и остаточные материалы. Жители оставляют в торговом центре различные предметы, бывшие в употреблении. Сотрудники центра по необходимости их ремонтируют и сортируют по отделам. Каждый магазин принадлежит независимым предпринимателям. В 2016 году ReTuna обеспечил работой 47 жителей Эскильстун.



Фото: lm-magazine.com

Технологии — всему голова

Примером внедрения новых технологических решений для перехода с линейных экономических моделей к замкнутым циклам может послужить проект по извлечению из органических отходов биогаза и удобрений в Осло. Для этого муниципалитет инвестировал средства в строительство городского биогазового завода. Выработанный газ применяется для заправки мусоровозов и общественных автобусов. А побочные продукты производства муниципалитет передает местным фермерам в качестве биоудобрений.

Вдохновить устойчивостью

В качестве примера взаимодействия городских властей и бизнеса в отчете приведен бизнес-парк «20|20» в Харлеммермере — на западе Нидерландов. Парк построен в соответствии со стандартами Cradle to Cradle (C2C), что в переводе с английского означает «От колыбели до колыбели». Эта концепция основана на идее циклических безотходных систем производства, которые не наносят вред окружающей среде. Парк занимает 92 тысячи квадратных метров площади, на которой расположены офисы, супермаркеты, фитнес-центр и несколько ресторанов. Все проекты реализованы с акцентом на снижение выбросов CO2 и внедрения принципов циклической экономики.



Фото: i.ytimg.com

Поделись сырьем своим

Авторы исследования отмечают, что муниципалитеты способны играть роль помощников в экологических взаимодействиях между городскими компаниями. Так, например, городской совет Питерборо профинансировал создание онлайн-платформы Share Peterborough, где фирмы могут торговать и обмениваться различными ресурсами между собой. Причем не только материалами, но также помещениями для конференций и даже навыками. Главное условие — максимально все использовать, чтобы слово «ненужный мусор» пропадало из обихода ведения бизнеса в городе. В основе такой инициативы — продвижение идей «business to business» или B2B, что означает «бизнес для бизнеса». B2B подразумевает, что компания работает не только на конечного рядового потребителя, но также на другие компании.

В российской действительности инициативы в сторону замкнутых циклов производства зачастую продвигаются снизу вверх — от бизнес-инициатив к муниципалитетам. Например, чтобы содействовать развитию циклической экономики в России, компания-поставщик упаковки, канцтоваров и хозтоваров для бизнеса «ОптиКом» запустила проект по вывозу бумажных отходов «Бумаговорот». В центре проекта — столичные офисы, где бумага чаще всего превращается в бесполезный мусор. Однако сбор макулатуры — это и забота о лесах (переработка одной тонны бумаги сохраняет 24 дерева), и сокращение выбросов в атмосферу СО2, а также существенная экономия воды и энергии. Идея «ОптиКома» в чем-то пересекается с инициативой в городе Питерборо, преследуя принципы максимально эффективного использования ресурсов и принципов услуги B2B.


«„Бумаговорот“ соответствует нашей миссии способствовать построению циклической экономики в России. Мы собираем макулатуру, из которой затем производят бумажную упаковку, таким образом, мы замыкаем цикл. Это не только предотвращает рост свалок, но и позволяет сохранять природные ресурсы», — рассказывает генеральный директор компании Максим Рогожко. Пока проект реализуется только в Москве и предполагает закупку компанией-партнером расходных материалов у «ОптиКом».

При этом «зеленым» офисам компания предлагает линейку экологичных товаров: от бумажно-гигиенической продукции из вторичного волокна до биоразлагаемых моющих средств. Чтобы сотрудники офисов быстрее приноровились к сбору макулатуры, компания бесплатно проводит тренинги для персонала компаний-участников проекта. Во время инструктажа работники получают информацию о том, как и зачем собирать макулатуру отдельно от бытового мусора, какие виды бумаги «ОптиКом» принимает на переработку и почему картонные стаканчики в контейнер для макулатуры помещать нельзя (подсказка: такие стаканчики в России пока не перерабатываются).

Рекомендуем почитать

Наверх